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Abstracts 
 
The deployment of distributed sensor networks 
in the environment provides unprecedented real-
time data streams that are useful for building 
data-driven modeling/forecasting and decision 
support. However, poor quality of data, which 
cannot be used effectively in models, is not 
uncommon due to site/system failures or 
transmission failures. Except for some simple 
threshold cutoffs/filtering, most existing data 
quality and assurance approaches involve visual 
inspection by human experts and can not meet 
real-time decision support needs. Automated 
approaches for detecting sensor anomalies and 
alerting data managers in real time are needed 
to facilitate event-driven collaboration and 
management of sensors. This paper describes 
cyberinfrastructure technologies that enable 
event-triggered anomaly detection and workflow 
execution, which not only automates the quality 
assurance (QA) and quality control (QC) 
process, but also facilitates event-driven 
collaboration and decision analysis with event-
triggered model and workflow execution. This 
approach can facilitate real-time adaptive 
monitoring and modeling, and ultimately real-
time decision support. A case study is shown in 
which these cyberinfrastructure technologies 
were used to support QA/QC of sensors in 
Corpus Christi Bay, Texas. Implications of this 
approach to the national environmental 
observatory initiatives, such as the WATer and 
Environmental Research Systems (WATERS) 
network sponsored by the US National Science 
Foundation (NSF), are also discussed. 

Introduction 
 
The rapid development of sensor network 
technologies in the last few decades has seen 
many experimental applications in the 
environmental and hydrological monitoring 

arena, where physical, chemical and biological 
sensors have been placed in the field for “in-
situ” sensing. Physical sensor networks that 
measure parameters such as temperature, 
pressure, humidity, light, sound etc. have been 
the most cost-effective and reliable sensors that 
have been used for monitoring the environment, 
while chemical and biological sensors are 
maturing rapidly for operational usage. For 
example, a recent review by Johnson et al. 
(2007) reported in-situ chemical sensor 
networks for the aquatic environment which can 
measure dissolved oxygen, methane and total 
gas tension, CO2, pH, nitrate, and other 
nutrients. Some of these sensor technologies 
have been used in the field since 1997 in 
Monterey Bay, California (Johnson et al. 2007). 
Porter et al. (2005) has reviewed wireless 
sensor networks used for ecology, where some 
of the instrumentation methods are applied in 
the water environment. Wang et al. (2006) 
describes some geo-referenced environmental 
monitoring applications of wireless sensor 
networks. Predictions have been made in a 
recent Nature article (Butler 2006) that by 2020, 
in-situ sensing will measuring everything, 
everywhere. Although there are still many 
technical obstacles such as power consumption, 
cost, size, reliability and biofouling to be solved 
before some large-scale integrated 
environmental sensor networks can be 
deployed/augmented, nevertheless, the age of 
the physical world being intensively 
instrumented and digitized in real-time is on the 
horizon.  

Compared to the rapid advancement of sensor 
technologies, information technologies that 
enable geographically-dispersed scientists and 
engineers to effectively and collaboratively use 
data from such distributed sensor networks for 
real-time decision support, modeling and 
forecasting are still in their infancy, let alone the 
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end-to-end support where users can easily find 
data history (also known as provenance) from 
sensors to workflows1 to publications, and know 
what has been done to the data and by whom.  
In addition, event-driven analysis is often 
desirable as adaptive sampling/management is 
often needed when extreme environment events 
happen. Poor quality of data is not uncommon 
due to many factors such as system failures, 
unknown transmission errors or extreme 
environmental conditions.  Except for some 
simple threshold cutoffs/filtering, most 
existing/traditional data quality assurance (QA) 
and quality control (QC) approaches involve 
manual visual inspection by human experts and 
can not meet real-time decision support needs. 
Technologies for automatic detection of sensor 
anomalies and alerting data managers in real 
time are needed to facilitate event-driven 
collaboration and management of sensors. This 
paper introduces research and 
cyberinfrastructure technology development 
underway at the National Center for 
Supercomputing Applications (NCSA) to 
address these needs, supported by the National 
Science Foundation towards their 
cyberinfrastructure vision (National Science 
Foundation 2007). 

In the following sections, some related 
background information on the WATERS 
Network initiative and previous work on different 
aspects of using data from distributed sensor 
networks are discussed. Prototype 
cyberinfrastructure technologies are next 
presented, which integrate collaborative portals, 
knowledge networking tools, and workflow 
software with a back-end provenance and event 
management system to enable end-to-end data 
history from sensor to workflow to publication. 
These “cyberenvironments” are initially being 
developed to support emerging environmental 
observatory initiatives such as the WATERS 
Network, as well as for research projects on 
adaptive monitoring and hazard management. 
Sensor anomaly detection is used as an 
example QA/QC use case in one of the 
WATERS network testbed projects in Corpus 
Christi Bay, Texas, to show the benefits of using 
integrated cyberinfrastructure technologies. The 
data-driven algorithm that detects the anomaly 
values in the data streams is also described. 
                                                                 
1 A workflow is a sequence of steps, such as data 

preparation and model execution, that are needed to 
accomplish a particular task. 

Conclusions then consider future directions and 
the implications and relationships to other 
ongoing national observatory efforts. 

Background and Related Work 

The WATERS Network initiative is motivated by 
the national need to understand and restore 
lake, stream, and coastal water quality to 
achieve sustainable and secure water supply 
while improving and preserving aquatic habitats 
(Water Science and Technology Board, 2006). 
Supported by the US National Science 
Foundation (NSF) Engineering and Geoscience 
Directorates, the WATERS Network is being 
proposed through the Major Research 
Equipment and Facilities Construction (MREFC) 
program, which funds major community 
infrastructure. A design for the network is being 
created through a joint planning effort derived 
from initiatives of the Consortium of Universities 
for the Advancement of Hydrologic Science 
(CUAHSI) and the Collaborative Large-scale 
Engineering Analysis Network for Environmental 
Research (CLEANER).  

The WATERS Network will consist of 
tiered/multi-scale remote and embedded 
sensing networks at each of approximately 10 
observatory sites in the U.S. that will enable 
researchers to answer critical questions 
regarding basin-scale transport and 
management of water, sediment, and 
contaminants, including integration of water 
studies in the natural environmental with water 
infrastructure, treatment technologies, and 
social processes. Real-time sensor data flow to 
models that enable adaptive monitoring and 
management are a key component of the 
WATERS Network as currently envisioned. 

Processing the data flows from a large sensor 
network with hundreds of sensors, such as 
those proposed for the WATERS Network, has 
been likened to “drinking from a fire hose” 
(Porter et al. 2005). Finding anomalies and 
acting upon interesting pattern/events in the 
data flow is even more challenging. However, 
informed decisions cannot be made on the basis 
of unreliable data, and therefore certain levels of 
data quality must be assured. A monitoring 
system without adequate QA/QC runs the risk of 
not being able to control the quality of data, and 
not being able to assure accuracy and precision. 
QA/QC has thus become an essential part of all 
measurement systems in general and 
environmental observatories in particular, 
because such community initiatives require 
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especially high national or even international 
comparability of data.  

Traditionally, QA/QC of environmental and water 
monitoring program follows certain protocols 
published by the Environmental Protection 
Agency (EPA) (e.g., EPA 1987, 1989a, 1989b, 
1996, 1998, 2000),  US Geological Survey 
(USGS) (e.g., USGS 2000a, 2000b) and/or the 
American Public Health Association (APHA) 
(e.g., APHA 1998). However, none of these 
methods work well for real-time sensor 
networks, where data streams are continuous 
and it is practically impossible to do in-lab 
experiments to manually detect outliers. One of 
the earlier efforts in performing QA/QC for real-
time sensor data was the “Water on the Web” 
program for educational usage 
(http://waterontheweb.org/under/instrumentation
/qaqc.html) during 1997-2004.  They 
acknowledge that “the QA/QC of near-real time 
remotely collected sensor data has provided 
challenges that were not present under 
traditional sampling regimes. ...... future efforts 
must be directed toward the unique problems 
posed by real-time data collection”. 

Estrin et al. (2003) outlines some of the 
cyberinfrastructure needs for environmental 
sensor networks, which emphasizes developing 
error resilience of the sensor networks, new 
security and data management systems, 
metadata systems, and analysis and 
visualization software. In the past, most of the 
work related to environmental sensor network 
only addresses a subset of the problems. For 
example, a relational database was developed 
for the monitoring and analysis of watershed 
hydrologic data (Carleton et al. 2005). Ganesan 
et al. (2003; 2004) propose and design new data 
handling, compression and storage 
architectures for sensor networks. Vivoni and 
Camilli (2003) describe how to do real-time 
streaming of environmental field data using 
handheld computers and use GIS web services 
to display georeferenced field data. Some 
papers have addressed the problems of 
detecting outliers from streaming data. For 
example, Palpanas et al. (2003) describe some 
theoretical considerations on how to find outliers 
from streaming data without giving any concrete 
case studies.  None of these works have 
addressed both the anomaly detection and the 
event-driven analysis, let alone the 
collaboration, provenance, and knowledge 
networking issues. 

The integrated cyberenvironment developed in 
this project can support distributed yet 
collaborative QA/QC for observatories with 
large-scale distributed sensor networks. In the 
following sections, some of the technical details 
are discussed. 

Event-Driven Cyberinfrastructure 
Technologies  
The reactive nature of real-time environmental 
forecast and modeling requires an event-based 
system. Responding to real-time changes and 
events in a timely manner is one of the important 
requirements for adaptive sensing and 
management. Event-driven execution of 
workflow and event-driven collaboration are 
functionalities to facilitate such needs. Non-
scheduled, event-driven collaboration will 
promote much faster turn-around time for 
research and projects. Event-Driven-
Architecture (EDA) is adopted as a software 
architectural approach for meeting such 
requirements. EDA defines a methodology for 
designing and implementing applications and 
systems in which events transmit between 
loosely coupled software components and 
services. Building applications and systems 
around an event-driven architecture allows 
these applications and systems to be 
constructed in a manner that facilitates more 
responsiveness, since event-driven systems 
are, by design, more normalized to 
unpredictable and asynchronous environments 
(Michelson 2006).  

Within the context of this EDA technology 
discussion, an event is defined as a message 
generated by an object, describing an aspect of 
the system’s state or history (e.g., temperature 
at a specific geographic location at a particular 
time). A sensor anomaly event, thus, can be 
considered as a sensor reading that appears to 
deviate markedly from other members of the 
data sample in which it occurs. There are 
usually three components from the event-
processing point-of-view: event generators, 
event broker, and downstream event-driven 
consumers. An event generator can be a 
component in the system (such as a workflow, a 
portlet, or a sensor) that produces events when 
appropriate (e.g., when an anomalous data point 
is identified by a workflow). The event broker 
usually does filtering, routing and deciding 
where to send the event. A downstream event 
consumer can be any other component in the 
cyberinfrastructure system (such as a desktop 
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dashboard that summarizes events for users, a 
portlet, a workflow etc.).  
In the current implementation, a 
publish/subscribe mechanism is used, based on 
the Java Message Service (JMS) standard 
(http://www.onjava.com/pub/a/onjava/2001/05/0
3/jms_primer.html) to allow the propagation of 
the event information from the event generator 
to the consumer via an event broker (ActiveMQ 
is used for this purpose. See 
http://activemq.apache.org/ for more information 
about the JMS broker). For example, if a user 
wants to be notified by email whenever a sensor 
anomaly occurs, he would subscribe to a 
specific “sensor anomaly” topic whose 
messages will only be sent out to the 
subscribers when an anomaly reading happens. 
A workflow component that can detect 
anomalies in a data stream can also subscribe 
to a specific topic, such as a wind speed data 
stream from a wind sensor, so that it can 
continuously process the data whenever it 
arrives.  
The EDA forms the backbone of the 
cyberinfrastructure and allows other 
components, described next, to interact and 
communicate. This essentially creates an event-
driven cyberinfrastructure system.  
Integrated Cyberenvironment 
An integrated cyberenvironment promotes 
individual innovation and group collaboration. To 
meet this goal, the following components are 
integrated in the system: 
1) A collaborative portal: a web-based portal 
called CyberCollaboratory (Liu et al. 2006) has 
been created to provide a centralized access 
point for users to find relevant groups, data, 
tools, documents, etc. and collaborate with each 
other based on common interests. Since it is 
web-based, users only need to have a web 
browser (such as Internet Explorer or FireFox) 
to access it.  The CyberCollaboratory supports 
customizable community spaces for different 
groups, where each group can have its own 
collection of tools and users. Users in these 
online virtual organizations can write individual 
blogs or post announcements to group blogs. A 
mediaWiki-based (http://www.mediawiki.org) 
wiki system for supporting collaborative writing 
was also provided. Discussion boards (or 
forums) are also being used and integrated with 
e-mail listservs so that bi-directional posting 
(email to forum and forum to email) is supported. 
Other documents such as Word or PDF file or 

PowerPoint slides are kept in document libraries 
where users can also post threaded comments 
on individual files. In addition, other tools such 
as text chat, data mining tools, or visualization 
tools can be integrated as portlets (a portlet is a 
software component that resides inside the 
portal). Figure 1 shows the community space for 
the WATERS Network Project Office in the 
CyberCollaboratory, where over 100 
researchers across the U.S. have been using 
this site to support planning for the WATERS 
network. 

 
Figure 1. Screenshot of WATERS Network 
Project Office community space in the 
CyberCollaboratory. 

Currently, several other projects, including the 
Corpus Christi Bay WATERS Testbed 
Observatory project have their own spaces in 
the CyberCollaboratory. 

An accompanying component to the 
CyberCollaboratory called CyberDashboard (a 
Java standalone desktop application, which 
users can download and run on their desktop 
computers) tracks users’ activities (file uploads, 
discussion board postings, users recently 
logged in, etc) and allows individuals to monitor 
events within communities of interest so they 
can remain connected to their groups without 
always logging in.  

2) A scientific workflow tool: Scientific 
workflows are usually defined as “networks of 
analytical steps that may involve, e.g., database 
access and querying steps, data analysis and 
mining steps, and many other steps including 
computationally intensive jobs on high-
performance cluster computers” (Ludäscher et 
al. 2006). A scientific workflow integration tool 
called CyberIntegrator (Marini et al. 2006) was 
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created to allow users to link different external 
tools such as Excel spreadsheets, ArcGIS 
modules or C++ codes (such as the sensor 
anomaly detection code) together with different 
input data sets. This tool can be either launched 
from within the CyberCollaboratory as an Applet 
running inside the web browser or as a 
standalone Java desktop application. 

3) A knowledge network: The social 
networking capability provided by web sites 
such as MySpace (http://www.myspace.com) 
and Facebook (http://www.facebook.com) has 
received much attention recently. Such 
capability has been leveraged in this system 
with more extended and contextualized scientific 
information (Green et al. 2006). A tool called CI-
KNOW (CyberInfrastructure Knowledge Network 
on the Web) has been integrated into the 
system that mines users’ activities and 
interactions when using the CyberCollaboratory 
or the CyberIntegrator  and presents the results 
either in a graphical network or as user 
recommendations.   Users can browse a 
contextualized scientific knowledge network in a 
clickable graphical network format, where 
relevant documents, publications, people, 
workflow, data, sensor, etc. are readily 
accessible and recommended that are related to 
users' current tasks. Such network creation is 
supported by the provenance and metadata 
service described next. 

4) Provenance and metadata service: 
Provenance and metadata service provides the 
semantic information about who uses/associates 
with what data/resources at what time. The 
current approach taken in this system is to 
enforce global unique identifiers and the initial 
implementation has focused on agreement on 
unique global user identifiers across different 
components (Futrelle et al. 2006). The 
underlying Tupelo 2 system provides a log-style 
API (Application Programming Interface) for 
different components (e.g., wiki, discussion 
board, document library, or workflow tool) to 
record RDF (Resource Definition Framework) 
triples. An RDF triple is in the form of 
<subject><predicate><object>, where the 
subject identifies a particular resource or entity 
such as a user or a tool, and the predicate 
expresses a relationship between the subject 
and the object. For example, one way to 
represent the notion “George has run the sensor 
anomaly detection model” is as a triple: 
<George> <has run> <the sensor anomaly 
detection model>. Such a triple is encoded as 

an XML (eXtensible Markup Languages) string 
so that computers can process it. The RDF 
information can be used by CI-KNOW to 
construct the scientific knowledge network that 
graphically represents relationships as 
discussed previously. 

 

 

Sensor Anomaly Detection Case Study 

To show the benefits of these integrated 
components and services, consider a sensor 
anomaly detection case study in Corpus Christi 
Bay, Texas. This case study focuses on the 
Corpus Christi Bay (CCBay) WATERS Testbed 
Observatory, where an interdisciplinary team of 
hydrologists, environmental engineers, 
information technologists, and biologists are 
currently collaborating to improve understanding 
of hypoxia in the bay (Minsker et al. 2006a). 
Hypoxia occurs when dissolved oxygen (DO) in 
aquatic environments is reduced to less than 
30% saturation or (~ 2 mg/L) where most fish 
cannot live. Hypoxia seems to be correlated with 
salinity-induced stratification, but the causes of 
stratification and spatial and temporal patterns 
of hypoxia are currently uncertain. The 
objectives of the testbed project are to: (1) 
explore how sensor data can be used to guide 
adaptive sampling, (2) create improved models 
of hypoxia, coupling numerical hydrodynamic 
and oxygen models with data mining methods, 
(3) demonstrate how these information sources 
can be integrated into emerging 
cyberinfrastructure tools to create an 
environmental information system (EIS) for 
collaborative research and decision support. 

Figure 2 shows the geospatial locations of the 
Corpus Christi Bay study area and the available 
sensor platforms in that region. There are 
multiple sensors administered by different 
organizations, including the Shoreline 
Environmental Research Facility (SERF, a 
research facility affiliated with Texas A&M 
University College Station), the Texas Coastal 
Ocean Observation Network (TCOON), and the 
Harte Research Institute (HRI) at Texas A&M 
University-Corpus Christi, (marked as UTMSI in 
Figure 2.). Ojo et al. (2007) gives details on the 
design concepts and field implementation of the 
SERF sensor platforms in CCBay. 

The following QA/QC scenario for CCBay could 
be envisioned for using the cyberinfrastructure 
technologies discussed previously: 
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A data manager, George Smith, subscribes to 
an alert service that provides a message 
whenever the sensor data streams show 
anomaly values. The alerts are triggered by an 
anomaly detection workflow running on the 
server, which continuously processes data 
streams from Corpus Christi Bay in near-real-
time. One day, George gets an email saying that 
there are many anomalous readings in the 
windspeed measurements from one of the 
sensors. George logs into the 
CyberCollaboratory, where he joins an ongoing 
discussion with his collaborators, who also 
received the alert, and are looking at the real-
time data plots and anomaly values on the 
sensor monitoring page in the 
CyberCollaboratory. The group agrees that the 
anomaly detection algorithm appears to be 
malfunctioning after looking at nearby sensors 
that also measure windspeed. Using the CI-
KNOW knowledge network, George discovers 
another sensor anomaly algorithm used for 
windspeed data at a different observatory. He 
then clicks on that sensor anomaly algorithm in 
the knowledge network (see Figure 3), which 
launches the CyberIntegrator workflow engine in 
the web browser and loads the new sensor 
anomaly detection algorithm into the 
CyberIntegrator. He then changes the input data 
stream to be the windspeed data stream from 
Corpus Christi Bay. He then launches this new 
workflow to the Observatory server by clicking 
the “publish” button, which begins running the 
workflow on the CCBay windpseed data stream 
immediately. Now the new sensor anomaly 
detection workflow produces a new anomaly 
data stream that is accessible for subscription or 
use by all other users who have permission. 

In the following paragraphs, some technical 
details are discussed on how such a scenario 
can be supported using the technologies 
described previously.  

Sensor Map Portlet 

First, a sensor map portlet was created in the 
CCBay testbed community space in the 
CyberCollaboratory by integrating Google Map 
(http://maps.google.com/) and the locations of 
the sensor platforms (latitude and longitude) in 
the study area, shown in Figure 4. This type of 
integration technique is called mashup of web 
applications. The resulting portlet has a list of 
sensor platform names on the right and a live 
google map ( “live” means that all functionalities 

of Google Map are available.) on the left with 
clickable icons for different sensor platforms. 

 
Figure 2. Study area and sensor locations in 
Google Map for the CCBay testbed observatory 
in the CyberCollaboratory.  

When a user clicks on a sensor platform icon on 
the map or a name on the left, a popup window 
will show up on the map with two tabs. The first 
tab shows basic information about the sensor 
platform such as the list of sensors available at 
this platform and a picture of the platform. The 
second tab is for user subscription to a specific 
data stream. For example, Figure 4 shows the 
information window (the top screenshot) of the 
SERF Oso sensor platform that has a list of 
sensors such as ADCP, Microcat, MetStation, 
FL3, Optode, and LISST. The bottom 
screenshot in Figure 3 shows the subscription 
window for a particular sensor “MetStation” that 
measures windspeed. Users can then subscribe 
to either the raw data stream or the anomaly 
data stream. The raw data stream will come 
directly from the sensor, while the anomaly data 
stream is the result of running a sensor anomaly 
detection workflow. The notification method for 
subscribers can be either through email or the 
CyberDashboard that the user runs on his/her 
desktop. For demonstration purposes, historical 
data were used to simulate the windspeed data 
stream (Minsker et al. 2006b), but the 
technology can be hooked up with real-time data 
when it is available. In the future, CUAHSI 
WaterOneFlow web services (CUAHSI, 2006) 
will be integrated to allow direct access to real-
time data stored on other servers. 
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Figure 3. Knowledge network for the sensor 
anomaly detection case study 

 

 

Figure 4. The information and subscription 
windows for the SERF Oso sensor platform. 

 

Sensor Anomaly Detection Algorithms 

To detect sensor anomalies in 
environmental data streams, a suite of new 
data-driven approaches are being developed 
and tested that will be deployed in the event-

driven CI in the future. The methods can be 
divided roughly into two categories: (1) 
autoregressive model-based anomaly detection 
and (2) Bayesian anomaly detection. An 
overview of these methods and initial findings 
are given below. 

The autoregressive model-based anomaly 
detection methods use a data-driven 
autoregressive model of the sensor data stream 
to act as a simulated redundant sensor whose 
measurements can be compared with those of 
the actual sensor. The classification of a 
measurement as anomalous is based on the 
difference between the model prediction and the 
sensor measurement. The performance of 
several data-driven modeling approaches were 
compared, including nearest neighbor, 
clustering, perceptron, and artificial neural 
networks for providing the autoregressive 
model. The variance of the “now-cast” 
predictions was calculated using 10-fold cross 
validation, and deviation of the sensor data from 
its corresponding now-cast prediction that is 
greater than the variance of the model will 
indicate that the data point was caused by either 
sensor mal-operation or a process anomaly.  It 
was shown that this method, along with a 
neural-network model of the sensor data stream, 
outperformed the other modeling methods for 
detecting errors in Corpus Christi windspeed 
sensor data.  In fact, these anomaly handling 
strategies identified a significant number of 
erroneous measurements in the windspeed data 
that manual QA/QC had failed to detect. The 
errors had durations ranging from 1 second to 
several minutes and affected approximately 6% 
of the data. After cleaning the errors in the 
training data, an assessment of several 
autoregressive anomaly detection strategies 
identified the best performing strategy to be a 
neural network detector using a 95% prediction 
interval, which had false positive and false 
negative rates of only 1% and 2%, respectively. 
The autoregressive model-based methods, 
however, are limited because they cannot 
consider several data streams at once and 
because missing values in the data stream 
render them incapable of classifying 
measurements that immediately follow the 
missing values. 

The Bayesian anomaly detection methods 
address these shortcomings by employing 
dynamic Bayesian networks (DBNs). DBNs are 
Bayesian networks with network topology that 
evolves over time by adding new state variables 
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to represent the system state at the current time. 
Filtering (e.g. Kalman filtering or Rao-
Blackwellized particle filtering) can then be used 
to infer the expected value of unknown system 
states, as well as the likelihood that a particular 
sensor measurement is anomalous. 
Measurements with a high likelihood of being 
anomalous are classified as such. Like the 
autoregressive model based methods, these 
methods perform fast, incremental evaluation of 
data as it becomes available, scale to large 
quantities of data, and require no a priori 
information regarding process variables or types 
of anomalies that may be encountered, and they 
can be easily deployed on large networks of 
heterogeneous sensors. However, unlike the 
autoregressive model based methods, these 
methods can operate on a single sensor data 
stream, or they can consider several data 
streams at once using all of the streams 
concurrently to perform coupled anomaly 
detection, and they are robust in the presence of 
missing values. Ongoing work is currently 
investigating the Bayesian methods’ abilities, 
using both coupled and uncoupled detection, to 
perform QA/QC on the Corpus Christi sensor 
data. 

Automated Event-Driven QA/QC Workflow 

Sensor anomaly detection algorithms such as 
those described above, as well as other event-
driven workflows such as real-time models, can 
be integrated into the CyberIntegrator and run 
on the server continuously to process the data 
stream. The workflow is configured so that it 
subscribes to the incoming data stream from the 
sensor and continuously processes the data to 
find any possible anomalies and produce its 
findings as a new data stream: the anomaly data 
stream. The anomaly data stream typically 
consists of the abnormal data value and other 
metadata description about the value (such as 
the time and location of the measurement). 

Furthermore, users can change the workflow 
parameters on the fly and publish the new 
workflow to a server that can then produce new 
data streams for community use, as described in 
the above scenario where George loads a 
different sensor anomaly workflow and changes 
its parameters so that it accepts the data stream 
of his choice. This goes beyond just publishing 
and sharing workflow templates for others to use 
locally, but allows users to start adding new 
resources to an observatory system. This is 
central to end-user customization and can 

facilitate individual’s innovation and community 
collaboration. Users of such an integrated 
cyberenvironment for environmental 
observatories are no longer just passive 
consumers (e.g., getting data from the 
observatory), but also active participants and 
contributors. This resembles what the users’ 
roles are in a typical Web 2.0 environment (e.g., 
Wikipedia is a user-generated encyclopedia on 
the web) (see also Atkins 2007, NCSA interview 
scripts). The cyberinfrastructure technologies 
developed in this project create a distributed yet 
collaborative QA/QC system to support large 
scale distributed sensor network. 

Automated Sensor Monitoring Portlet 

A sensor monitoring portlet was also developed 
to visualize the real-time sensor data stream in 
the CyberCollaboratory. The sensor monitoring 
plot can automatically plot/update the real-time 
sensor data streams (both raw and derived) 
inside the web browser in real-time without the 
user pressing any refresh button. This helps 
users to identify any questionable event in the 
data stream visually, as well as monitoring the 
measurement graphically (see Figure 5).  

Conclusions 
 

This paper presented a novel cyberinfrastructure 
to support distributed and collaborative QA/QC 
and event-driven analysis for distributed sensor 
networks. An event-driven-architecture was 
adopted to build the integrated 
cyberenvironment. The sensor anomaly 
detection case study at the Corpus Christi Bay 
of Texas demonstrated the functionalities and 
benefits of such a system.  
A successful Observatory system such as the 
WATERS network needs a highly effective 
QA/QC system. The prototype cyber-
infrastructure technologies and algorithms 
presented here can help to meet such demands. 
Furthermore, the same event-driven analysis 
capability can support real-time data mining, 
modeling, and decision support that goes 
beyond just QA/QC. Event-triggered modeling 
can provide automated forecasting that will 
enable researchers to adaptively monitor 
infrequent events and significantly improve the 
lead time needed for emergency management 
such as stormwater management, pollution 
events, and flood control. 
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Figure 5. Sensor monitoring portlet showing 
both the raw data stream (Windspeed in knots) 
and simulated anomaly values in two different 
locations (Oso and Packery). 
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