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ABSTRACT OF THE THESIS 

Integration of Embedded and Remote Sensed Temperature for Daily Temperature 
Mapping 

by FARBOD FARZAN 

Thesis Director: 

David J. Hill 

 

Temperature variability is an important driver of many important global and regional 

processes, which has inspired researchers to understand and predict the spatial variability 

of surface air temperature. This importance has increased demand for quality, high 

resolution gridded climatological datasets that deliver detailed information on the 

variability of temperature at regional scales. Several interpolation and extrapolation 

techniques have been introduced that use point data sources (land-based data from 

weather stations). However, the scarcity of weather stations with long-term records and 

good spatial coverage and the impacts of a non-stationary climate limits these traditional 

methods. Through the analysis of existing ground-based temperature sensors we have 

shown that there are inadequate ground-based measurements to estimate the spatial 

variability of daily min/max temperature. Furthermore, we have shown that existing 

interpolation methods are insufficiently accurate to estimate the local temperature at 

ungauged locations because they cannot capture anthropogenic (e.g. urban heat island) or 

microclimatological (e.g. cold air pooling) effects.  This result implies that, in general, 



ground-based temperature measurements are too sparse to capture the spatial variability 

of temperature. Together with satellite observations, gridded meteorological variables can 

provide important information of the complex interactions of these features in order to 

accurately map temperature across broad regions. Satellite remote-sensing is another way 

for acquisition of land surface temperature (LST) data. However, due to technical 

constraints, satellite thermal sensors are incapable to supply both spatially and temporally 

dense LST image data. The reason for this is that the spatial and temporal resolutions of a 

satellite thermal sensor are anti-correlated, meaning that a high spatial resolution is 

related with low temporal resolution and vice versa. The trade-off between spatial and 

temporal resolution of satellite data, encouraged us to apply the Moderate Resolution 

Imaging Spectroradiometer (MODIS) as a source of remote-sensed land surface 

temperature data to capture many of the rapid biological and meteorological changes that 

MODIS (Spatial Resolution [bands 20-23]: 1km, 5km) observes in every 1 to 2 days. 

This work integrates both remote sensed and ground-based observations to account for 

anthropogenic and microclimatological impacts on the surface air temperature. Our 

method combines land-based embedded sensor data with remote-sensed data to construct 

continuous maps of daily min/max temperature over broad regions, and is able to capture 

the underlying spatial variability of temperature better than other traditional spatial 

methods. 
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Chapter1 

Introduction to Spatial Interpolation 

 

1 Introduction 

1.1 Introduction 
 

Spatial interpolation of climatic information has a significant role in local policy 

decisions and natural resource management. Numerous applications such as validation of 

climate models (Widmann and Bretherton 2000 [1]), monitoring or detecting and 

assessing potential impacts of regional climate change (Lobell et al. 2006 [2]), risk 

management (Kaplan and New 2006 [3]), and impact of human activities on regional 

environments and ecosystem services, are important factors in such a task. In the study of 

climate change, temperature is one of the most important variables, along with 

precipitation, and greenhouse gases like carbon dioxide. Generally there is considerable 

motivation to understand and predict the variability of regional surface air temperature. 

For instance, summer temperature, especially daily extremes, dictate electrical energy 

usage, affect water demand, and impact agriculture and ecosystems. Temperature 

variability is an important driver of many ecological processes, it has been understood for 

some time that variability in temperature and soil moisture is a major determinant of plant 

distribution (Whittaker, 1967 [4]; Stephenson, 1990 [5]). The numerous ecological 



processes (photosynthesis, evapotranspiration, respiration, decomposition, etc.) are 

closely related to meteorological conditions. 

Environmental forces such as precipitation and temperature have significant impact on 

the performance of infrastructure. In particular, the long-term performance of bridges is 

significantly impacted by the cyclical freezing and thawing of moisture. Freeze/thaw 

cycling degrades concrete and asphalt surfaces reducing the strength of bridge 

superstructures, exposes reinforcing steel to accelerated corrosion, and damages bridge 

deck surfaces. Thus, quantifying the freeze/thaw cycling for each bridge is a necessary 

step in evaluating and forecasting the performance of a bridge inventory.  Such 

information could be derived from daily min/max temperatures measured at each bridge 

location with developing spatial models of the surface air temperature that can be used to 

estimate the temperature over broad areas. The goal of this particular case will be “virtual 

temperature sensors” that can be deployed at any location (i.e. at a bridge location) within 

the model domain. Virtual sensors have been explored in a number of scientific domains, 

and have been shown to be powerful tools for providing indirect measurements of 

phenomena of interest at ungauged locations (Cecil & Kozlowska 2009 [6]; Havlik et al. 

2009 [7]; Douglas et al. 2008 [8]; Aberer et al. 2007 [9]; Jayasumana et al. 2007 [10]; 

Ciciriello et al. 2006 [11]; Kabadayi et al. 2006 [12]). 

Due to the increased attention given to the subject of climate change, there is a rapidly 

rising demand for quality, high resolution gridded climatological datasets that provide 

detailed information on the variability of temperature and precipitation at regional scales. 

These data enable the spatially explicit investigation of complex near surface-atmosphere 

interactions over a larger, continuous region than the original climate station data permit 



(Serbin et al. 2008 [13]) which will pave the way of continuous development in 

application of spatially explicit environmental models. Weather stations with long-term 

records and good spatial coverage are uncommon (Willmott et al. 1994 [14]);thus a 

challenge exists in gathering information from point data sources and generating from 

these a reasonable interpolation or extrapolation across topographically variable 

conditions at a variety of temporal and spatial scales. Generally, two problems arise from 

this lack of well-conditioned observational networks. Estimating a time-averaged weather 

or climate variable (e.g., air temperature) at unsampled locations by traditional spatial 

interpolation is relatively unreliable, and in turn, areal averages made from the network 

observations can be biased.  

The uneven and relatively sparse distribution of stations that report daily climatological 

variables has led to rich literature describing and comparing techniques to interpolate 

these point measurements. There have been several studies that have applied simple 

spatial interpolation methods for spatial modeling of surface air temperature. Although 

each study has its own considerations, all traditional spatial interpolation methods that 

have been applied to air temperature mapping process can be categorized into one of the 

groups described below: 

Inverse distance weighting (Willmott et al., 1985 [15]; Isaaks and Srivastava, 1989 [16]); 

The process of assigning temperature to unknown points by using values from scattered 

sets of known points (station locations with available temperature data). The unsampled 

points would be valued based on the simple weighting function which has an inverse 

relationship with distance from the known points. 



Ordinary kriging (Deutsch & Journel 1992 [17]); In essence, as with inverse distance 

weighting, the estimation functions for ordinary kriging are a form of locally weighted 

averages in which the weights are derived following an initial investigation into the 

spatial structure of the data (variogram modeling). Kriging however, unlike inverse 

distance weighting, also takes into account the relative positions of the contributory 

sample data points. Moreover, the property being estimated (temperature) is treated as a 

regionalized variable whose variation over space can be modeled statistically. 

Partial thin-plate splines (Hutchinson 1991 [18]; Jarvis & Stewart 2001a, b [19, 20]); 

Thin-plate splines are a physically based 2D interpolation scheme for arbitrarily spaced 

tabulated data (xi, yi, f(xi, yi)). These splines are the generalization of the natural cubic 

splines in 1D. The spline surface represents a thin metal sheet that is constrained not to 

move at the grid points. Smoothing splines allow both the smoothness and exactness of a 

surface fit to be considered together. The methodology of Hutchinson et al. 1991 [18] 

uses automatic generalized cross validation to optimize the smoothing function so that 

over-smoothing does not produce significant departures from the data points. In the 3D 

model, elevation is used as the third independent splining factor; in the 2D model, 

elevation is one of a number of partial linear covariates determined by the regression 

analyses. 

Truncated Gaussian filtering (Thornton et al. 1997 [21]; Hasenauer et al. 2003 [22]); The 

process of using an iterative station density algorithm to determine a local set of predictor 

stations for each given control point, each with a weight that decreases with distance 

from the prediction point. Temperature gradients are calculated by summing the weighted 

contribution of the temperature gradient computed from every possible predictor station 



pair, the interpolation weights are assigned to all stations in the database by using a 

truncated Gaussian filter which assigns weights according to a Gaussian probability 

density function that is truncated at some distance α from the mean. 

Geostatistical methods (Jarvis & Stewart 2001a, b [19, 20]); Geostatistics is the study of 

phenomena that vary in space and/or time. Geostatistical methods use a semivariogram 

analysis to estimate the process using the best linear unbiased estimator. Jarvis et al. 

explored the derivation and selection of a comprehensive set of continuous topographic 

and land-cover influential guiding variables  (e.g., North map coordinate, elevation, 

coastal and urban effects) to guide the interpolation of regional air temperature. These 

methods have the ability to update historical topoclimatic models with taking into 

account digital elevation and land cover data. 

 

Cross-comparisons of above methods have revealed that simple interpolation is 

insufficient to capture the spatial variability of temperature (Stahl et al. 2006 [23]).  

Surface air temperatures are influenced not only by the macro-climatology of a site (i.e. 

regional patterns), but also by local features such as topography (e.g. cold air pooling), 

proximity to deep water bodies (e.g. ocean), proximity to high thermal capacity materials 

(e.g. urban heat island effect) (Lundquist et al. 2008 [24]; Jarvis & Stewart 2001a [19, 

20]).  Thus, it is necessary to develop spatial estimation methods that are more reliable 

than traditional interpolation methods. (Willmott et al. 1994 [14]). 

Together with satellite observations, gridded meteorological variables can provide 

important information of the complex interactions of these features in order to accurately 

map temperature across broad regions. Particularly, satellite observations of land surface 



temperature have been used successfully for urban landscape management (Quattrochi et 

al. 2000 [25]), urban environmental quality monitoring (Nichol & Wong, 2005 [26]), and 

urban risk analysis (Dousset et al. 2007 [27]). To gain knowledge about land surface 

temperature (LST) over urban areas from space, satellite-based sensors operating in the 

thermal infrared (TIR) spectral region are used as they provide LST image data at various 

spatial and temporal scales. However, due to technical constraints, satellite thermal 

sensors are unable to supply both spatially and temporally dense LST image data. The 

reason for this is that the spatial and temporal resolutions of a satellite thermal sensor are 

anti-correlated, meaning that a high spatial resolution is related with low temporal 

resolution and vice versa (Stathopoulou & Cartalis, 2009 [28]). 

The trade-off between spatial and temporal resolution encouraged us to apply the 

Moderate Resolution Imaging Spectroradiometer (MODIS) as a source of remote-sensed 

land surface temperature data. MODIS is a multi-spectral imaging instrument that is 

carried aboard both the Terra and Aqua satellites; it takes measurements all day, every 

day; and it has a wide field view. MODIS’s frequent coverage complements other 

imaging systems such as Landsat’s Enhanced Thematic Mapper Plus, which reveals the 

earth in higher spatial details (Spatial Resolution: 30 m [60 m - thermal, 15-m pan]), but 

can only image a given area once every 16 days which is too infrequent to capture many 

of the rapid biological and meteorological changes that MODIS (Spatial Resolution 

[bands 20-231

 

]: 1km, 5km) observes in every 1 to 2 days. 

                                                           
1 MODIS has 36 different bands. Each band has specific bandwidth and primary usage. Bands 20-23 
measure Surface/Cloud temperature.  



1.2 Scope of Thesis 
 

Through a review of the literature, and an analysis of existing ground-based temperature 

sensors, we have concluded that there are insufficient ground-based measurements to 

estimate the temperature throughout our study region.  This implies that in general 

ground-based temperature measurements throughout the United States are too sparse to 

capture the spatial variability of temperature which makes obtaining sufficient data from 

ground-based sources to calibrate and validate temperature models difficult. Additionally, 

we have postulated that existing interpolation methods are insufficiently accurate to 

estimate the local temperature at ungauged locations because they cannot capture 

anthropogenic (e.g. urban heat island) or microclimatological (e.g. cold air pooling) 

effects. This work integrates both remote sensed and ground-based observations to 

account for anthropogenic and microclimatological impacts on the surface air 

temperature.  Testing and demonstration of the spatial temperature model is 

accomplished using a case study from the State of New Jersey, which is in the 

Northeastern and Middle Atlantic regions of the United States with geo-location 

boundary box of Latitude 38° 56′ N to 41° 21′ N, and  Longitude 73° 54′ W to 75° 34′ W, 

bordered on the north and east by the state of New York, on the southeast and south by 

the Atlantic Ocean on the west by Pennsylvania and on the southwest by Delaware. New 

Jersey contains high levels of urban development with the population density of 

1,185/mi2 (458/km2) which is ranked 1st in the US based on 2010 Census. Our method 

constructs continuous maps of temperature over our study region each day, and is able to 

capture the underlying spatial variability of temperature better than other traditional 

spatial methods.  

http://en.wikipedia.org/wiki/Northeastern_United_States�
http://en.wikipedia.org/wiki/Mid-Atlantic_States�
http://en.wikipedia.org/wiki/United_States�
http://en.wikipedia.org/wiki/New_York�
http://en.wikipedia.org/wiki/Pennsylvania�
http://en.wikipedia.org/wiki/Delaware�
http://en.wikipedia.org/wiki/List_of_U.S._states_by_population_density�


This study is organized as follows. The next chapter (Chapter2) describes broad study of 

temperature data, and its availability over the state of New Jersey. Chapter3 introduces 

two popular conventional interpolation methods (Inverse distance weighting and 

truncated Gaussian filter) including variety of comparison tests, and demonstrating their 

performances, and limitations. The last chapter (Chapter4) introduces the application of 

remote sensing for purpose of temperature measurement, and describes the possible 

interpolation method which integrates both ground based, and remote sensed temperature 

data for purpose of temperature mapping. 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter2 

Study of temperature data over the state of New Jersey 

 

2 Study of Temperature Data over the State of New Jersey 

2.1 Introduction 
 

Existing meteorological sensor networks are too sparse to accurately characterize the 

min/max temperature over broad spatial areas. Figure 1 illustrates the distribution of 

sensors participating in the National Climactic Data Center (NCDC’s) Cooperative 

Observer Network over the state of New Jersey. Cooperative Stations are identified by a 

6-digit number. The first two digits designate a USA state or territory code. The last four 

digits are assigned to stations within a state in general accordance with the alphabetic 

order of the station name (e.g., Atlantic City International Airport coop ID: 280311).  It 

can be seen from figure 1 that the minimum, maximum, and average distance between 

sensors is 4.9 miles, 164.01miles, and 55.68 miles (Actual minimum distance  is 2.63 

miles between Sussex 2 NW and Sussex 8 NW, but Sussex 8 does not have data after 

May 2005), respectively.  At the same time, the State of New Jersey has a land area of 

approximately 8700 square mile. Moreover, not all these existing sensors provide useful 

information for temperature estimation. For example, of the 41 Cooperative Observer 



Network sensors that were operational between 1/1/98 and 1/1/2008, only 16 of them 

provide continuous temperature data over the desired period, resulting in an average 

station density of 1 station per 540 square miles.  

 

 

 

 

 

 

 

 

 

 

 

  

For better understanding of temperature data, the average maximum, minimum, and mean 

temperature for the study period (1/1/1998 – 1/1/2008) over the state of New Jersey based 

on historical stations data has been provided as the below. 

Table 1 Average maximum, minimum, and mean temperature over the state of New Jersey (1/1/1995 – 
1/1/2008) 

 

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin

65.5 45.1 65.6 43.6 62.8 42.4 64.2 42.7 65.2 44.3 61.19 42.5 62.9 43.9 63.8 44.3 65.8 45.7 64.1 44.3

51.8526685 53.3786364 54.0438706 55.758177 54.204786

2004 2005 2006 2007

T mean

55.2717513 54.5813304 52.5588788 53.455134 54.7614751

1998 1999 2000 2001 2002 2003

Figure 1 Distribution of sensors over the state of New Jersey 



The availability of data in the current meteorological stations of New Jersey is presented 

in table 2 as below. 

                    Table 2 Availability of data in New Jersey meteorological stations 

 

No Data Before No Data After Total Days without Data

1/1/2001

7

1/1/2004

108

55

61

1/1/2004

1/1/2001 33

1/1/2000 5/31/2005

There is no 7 consecutive days with data

2/1/2002 42

2/29/2004 10

11/30/2006 70

9/22/2004 82

9/30/2004 19

2/28/2002

59

600

2/1/2000 5/31/2006

183

5/31/2005

26

11/1/2004

1/8/2004 108

23

TO MS RIVER

TUCKERTO N 2 NE

WANAQ UE RAYMO ND DAM

WERTSVILLE 4 NE

Station Names

PLAINFIELD

SANDY HO O K

SEABRO O K FARMS

SO MERVILLE 4NW

SUSSEX 2 NW

SUSSEX 8 NW

MILLVILLE MUNI AP

MO O RESTO WN

NEW BRUNSWICK 3 SE

NEWARK INTL AP

NEWTO N

PEMBERTO N

INDIAN MILLS 2W

LAKEHURST NAS

LAMBERTVILLE

LITTLE FALLS

LO NG BRANCH O AKHURST

LO NG VALLEY

FLEMINGTO N 5 NNW

FREEHO LD-MARLBO RO

HAMMO NTO N 1 NE

HARRISO N

HIGH PO INT PARK

HIGHSTO WN 2W

CAPE MAY 2 NW

CHARLO TTESBURG RS VR

CHATHAM 2W

CRANFO RD

ESSEX FELLS SVC BLDG

ESTELL MANO R

ATLANTIC CITY

ATLANTIC CITY INTL AP

BELLEPLAIN STN FO REST

BO O NTO N 1SE

BRANT BEACH BECH HAVEN

CANO E BRO O K



2.2 Seasonality Removal 
 

In statistics, many time series exhibit cyclic variation known as seasonality, periodic 

variation, or periodic fluctuations. This variation can be either regular or semiregular. 

Initial investigation of the temperature data revealed a significant temporal trend, which 

is illustrated in Figure 2.  This temporal trend is due to the seasonal fluctuation from 

coldest (mid-January) to warmest (early August).   

 

Figure 2 Ten-year average of maximum daily temperature at each cooperative network sensor location 
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2.2.1 Statistical analysis for existence of seasonality 
 

Autocorrelation refers to the correlation of a time series with its own past and future 

values. Informally, it is the similarity between observations as a function of the time 

separation between them. It is a mathematical tool for finding repeating patterns such as 

seasonality, and detecting non-randomness in data. Autocorrelation plot axes definitions 

are as below: 

• Vertical axis: autocorrelation coefficient: 

𝑅ℎ = 𝐶ℎ
𝐶0�                                                                                                                 

(1)        

𝐶ℎ = 1
𝑁
∑ [(𝑋𝑡 − 𝑋� )(𝑁−ℎ
𝑡=1 𝑋𝑡−ℎ − 𝑋� )                                                                           

(2)   

𝐶0 = 1
𝑁
∑ [(𝑋𝑡 − 𝑋� )2]    𝑁
𝑡=1                                                                                         

(3)       

• Horizontal axis: lag 

The autocorrelation plot for ten-year of maximum daily temperature is demonstrated as 

below: 



 

Figure 3 Autocorrelation plot for ten-year of maximum temperature 

 

Autocorrelation structure of a time stationary process will not change over time. The 

oscillation of the autocorrelation plot will confirm the existence of seasonal trend. 

Moreover, because the autocorrelation plot does not decay to zero the non-randomness of 

data will be confirmed indeed. Using available data, we modeled this seasonal trend as a 

series of sine terms: 

 𝑇𝑚𝑎𝑥(𝑡) = 63.7004 − 20.7831 cos(0.0172𝑡) − 8.1297 sin(0.0172𝑡)                (4) 

                                                                                                                                                                                                              

     𝑇𝑚𝑖𝑛(𝑡) = 44.8093 − 19.2716 cos(0.0172𝑡) − 8.1801 sin(0.0172𝑡)                 (5) 

Subtracting 10-year maximum temperature from the trend-equation  𝑇𝑚𝑎𝑥  gives the 

detrended maximum daily temperature data, shown in figure 4 (figure 4 is the detrended 

version of figure 2). As it can be seen in this figure the detrended data do not exhibit a 

temporal trend. 

0 100 200 300 400 500 600 700
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Auto Correlation Function

Lag

A
C

F



 

Figure 4 De-trended ten-year average maximum temperature at each cooperative network sensor location 

 

To validate the removal of seasonality, partial autocorrelation plot has been provided. 

Partial autocorrelation plots are formed by: 

• Vertical axis: Partial autocorrelation coefficient at lag h. 

• Horizontal axis: Time lag h (h = 0, 1, 2, 3 ...). 



 

Figure 5 Partial autocorrelation plot for ten-year maximum temperature 

 

It can be clearly seen (figure 4), and statistically approved (figure 5) that the seasonal 

trend has been removed successfully. 

 

2.3 Semivariogram Analysis 
 

Geostatistics is the study of phenomena that vary in space and/or time (Deutch, 2002 

[29]). “It can be regarded as a collection of numerical techniques that deal with the 

characterization of spatial attributes, employing primarily random models in a manner 

similar to the way in which time series analysis characterizes temporal data.” (Isaaks and 

Srivastava, 1989 [16]). One of the basic components of geostatistics for characterization 

of spatial correlation is the semivariogram analysis. 
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To explore the ability of the existing Cooperative Observer Network sensors to 

characterize the spatial variability of temperature, a semivariogram analysis was 

performed.  The semivariance can be computed using the following formula: 

                                   𝛾 = 1
2𝑁(ℎ)

∑ �𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)�
2𝑁(ℎ)

𝛼=1                                    (6)                          
 

 

  
Where N(h) are the number of data pairs separated by a distance h, 𝑧(𝑢𝛼)  is the 

measurement of the value of interest at location 𝑢𝛼 , and 𝑧(𝑢𝛼 + ℎ)  is the lagged 

measurement of the value of interest at location 𝑢𝛼 + ℎ . Sometimes 𝑧(𝑢𝛼)   will be 

referred to as the “tail” variable and 𝑧(𝑢𝛼 + ℎ) will be referred to as the “head” variable.   

Thus, from Equation 6, the semivariance at distance h is equivalent to half the average 

squared difference between measurements separated by distance h.  If sufficient 

information exists to characterize the small scale variability of the phenomenon of 

interest, the semivariogram will be approximately zero at the smallest spatial separation 

distance. Furthermore, if there are no significant spatial trends, the semivariance will 

asymptotically approach the global inter-station covariance which has been demonstrated 

as below: 



 

Figure 6 Sample semivariogram of data without significant spatial trends 

 

The isotropic (i.e. direction independent) semivariogram computed from the 

measurements made by the Cooperative Network sensors between 1/1/1998 and 1/1/2008 

is show in Figure 7.  Since it is well-known that a temporal trend exists in the data, the 

temporal trend was removed before computing the semivariance.  Figure 7 clearly shows 

a significant deviation from zero near the origin.  This implies that the stations are too 

sparse to characterize the small scale variability of the temperature.  Additionally, 

because the semivariance grows without bound, it can be determined that there are 

significant spatial trends within the data.  



 

Figure 7 The semivariogram plot for sensors 

 

2.4 Temperature modeling challenges 
 

Since our exploratory analysis indicated that there are significant spatial and temporal 

trends in the surface air temperature, our model needs to capture this trend. Our approach 

decouples these trends.  The temporal trend is described by Equation 4, whereas a model 

of the spatial trend must still be developed since prior studies have shown that straight-

forward applications of interpolation methods will not provide accurate results when 

there is a significant spatial trend in the data.  Thus, we have explored several 

anthropogenic and microclimatologic drivers suggested in the literature, namely, 

northing, elevation, and log population (Jarvis et al. 2001 [20]). To identify these trends, 

we investigated plots of temperature versus driving feature.  Figure 8, 9, 10, 11, 12    and 

13 show examples of such plots for temperature vs. elevation, temperature vs. log 

population, and temperature vs. northing.  Again to increase the generality of the result, 

the temporal trend was removed using Equation 4. 
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       Figure 8 De-trended maximum temperature square versus elevation 

 

 

 

It should be mentioned here that although in lots of spatial interpolation studies lapse rate 

has been used for adjusting the temperature for different altitudes ([21, 30, 31, 32, 33, 34, 

35, 36, 37,38]),  but the above figures (Figure8, and 9) show that there is not a clear  
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                          Figure 9 De-trended minimum temperature versus elevation 



trend between temperature and elevation.   In general, a lapse rate is the negative of the 

rate of temperature change with altitude change with mathematical definition of: 

γ =  −𝑑𝑇 𝑑𝑧�                                                                                                            (7) 

Where γ is the lapse rate given in units of temperature (T) divided by units of altitude (z). 

Plots for temperature vs. log population, and temperature vs. northing: 
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Figure 10 De-trended maximum temperature versus log of population density 

Figure 11 De-trended minimum temperature versus log of population density 
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        Figure 13 De-trended minimum temperature versus northing 
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    Figure 12 De-trended maximum temperature versus northing 



 

 

2.5 Conclusion 
 

Despite the obvious existence of a trend illustrated by the semivariogram analysis, the 

pairwise correlation analysis illustrated in Figures 8, 9, 10, 11, 12, and 13 does not 

exhibit a clear spatial trend in the data.  We suspect that result is caused by 2 primary 

features of the system: (1) insufficient data density and (2) complex interactions of the 

temperature drivers.  Since there are fewer than 20 stations providing continuous 

temperature data throughout the State of New Jersey, there may be in sufficient data to 

characterize the relationship between local temperature and ancillary anthropogenic and 

microclimatologic features.  However, it is more likely that the complex interaction of 

these drivers is obscuring the relationships.  New Jersey is the most heavily urbanized 

state in the US, and it is proximal to the 1st (New York City) and 6th (Philadelphia) largest 

cities in the US.  At the same time there is significant geologic variation from the 

mountainous northwestern region of NJ to the Pine Barrens in the south.  New Jersey also 

has a significant amount of Atlantic Ocean coastline, and has several major rivers 

(Delaware, Hudson, and Raritan).  Thus, we expect that there are multiple strong 

influences on the data from these drivers. 

 

 

 



 

 

Chapter 3 

Inverse Distance Weighting vs. Truncated Gaussian Filter 

 

3 Inverse Distance Weighting vs. Truncated Gaussian Filter 

3.1 Introduction 
 

Most of spatial interpolation models apply weighted average models, and they vary with 

each other in weight calculation method. Two popular weight calculation methods are 

Inverse Distance, and Gaussian Filter. For this reason two interpolation procedures 

include of Inverse Distance Weighting and Truncated Gaussian filter are presented and 

assessed with respect to their ability to estimate maximum and minimum land surface 

temperature at unsampled points from available station data. To test the possibility of 

getting better results over each method, truncated Gaussian filter (TGF) (Thornton et al. 

1997 [21]) and inverse distance weighting (IDW) (Isaaks & Srivastava, 1989 [16]) 

implemented in the MATLAB computing language. Brief introduction of each method is 

provided as below. 

 



 

3.1.1 Inverse Distance Weighting (IDW) 
 

Inverse distance weighting (IDW) is a method for multivariate interpolation, a process of 

assigning values to unknown points by using values from usually scattered set of known 

points. Here, the value at the unknown point is a weighted sum of the values of N known 

points. A general form of finding an interpolated value 𝑢 at a given point 𝑥 based on 

samples 𝑢𝑖 = 𝑢(𝑥𝑖) for i = 0, 1,..., N using IDW is an interpolating function: 

𝑢(𝑥) =  ∑ 𝑤𝑖(𝑥)𝑢𝑖
∑ 𝑤𝑗(𝑥)𝑁
𝑗=0

𝑁
𝑖=0                                                                                            (8) 

Where:  𝑤𝑖(𝑥) =  1
𝑑(𝑥,𝑥𝑖)𝑃

                                                                                       (9) 

𝑥 denotes an interpolated (arbitrary) point, 𝑥𝑖  is an interpolating (known) point, d is a 

given distance (metric operator) from the known point 𝑥𝑖 to the unknown point 𝑥, N is 

the total number of known points used in interpolation and p is a positive real number, 

called the power parameter representing the decay in similarity between values over 

distance (Jarvis et al. 2000 [19, 20]).  

 

3.1.2 Truncated Gaussian Filter (TGF) 
 

The general form of the truncated Gaussian filter, with respect to its central point, p, is 

𝑤(𝑟) = �
0                                        , 𝑟 > 𝑅𝑝

exp [−(𝑟 𝑅𝑝� )2 ∝]  − 𝑒−∝, 𝑟 ≤ 𝑅𝑝
�                                                         (10) 



Where 𝑤(𝑟) is the filter weight associated with a radical distance  𝑟 from p, 𝑅𝑝  is the 

truncation distance from p, and ∝ is a unit-less shape parameter. 

The spatial convolution of this filter with a set of horizontal station locations results, for 

each point of prediction, in a list of weights associated with observations. Because of the 

spatially heterogeneous distribution of observations, a constant value for 𝑅𝑝 results in a 

large disparity in the number of observations with non-zero weights between points in the 

least and the most densely populated regions of the prediction grid. 𝑅𝑝 can be reduced in 

data-rich regions, using information from a smaller radius, and increased in data-poor 

regions. For this purpose TGF specifies N, the average number of observations to be 

included at each point. 𝑅𝑝 is then varied as a smooth function of the local station density 

in such a way that this average is achieved over the spatial domain. The smooth variation 

of 𝑅𝑝  ensures a continuous interpolation surface, and is accomplished through the 

iterative estimation of local station density at each prediction point, as follows:  

I. For all grid cells, the same user-specified value, R, is used to initialize 𝑅𝑝.  

2. Given𝑅𝑝 , equation (10) is used to calculate weights  𝑤𝑖 , where i = (I, ..., n) are 

observation locations, and the local station density 𝐷𝑝 (number of stations/area) is then 

determined 

𝐷𝑝 =  
∑ 𝑤𝑖

𝑤�
𝑛
𝑖=1 

𝜋𝑅𝑝2
�                                                                                                    (11) 

Where 𝑤�  is the average weight over the untruncated region of the kernel, defined as 



𝑤� =  
∫ 𝑤(𝑟).𝑑𝑟𝑅𝑝
0

𝜋𝑅𝑝2 
�  = ( 1 −  𝑒−∝ ∝  � ) −  𝑒−∝                                                  (12) 

3. A new 𝑅𝑝 is calculated as a function of the desired average number of observations, N, 

and the most recent calculation of 𝐷𝑝 as:  

 𝑅𝑝 =  �𝑁
∗
𝐷𝑝.𝜋�                                                                                                        (13) 

 𝑁∗ = 2𝑁 , 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝐼 − 1 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑁∗ = 𝑁 ,𝑓𝑖𝑛𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

This modification of N* is a result of filter truncation, and helps to avoid the occasional 

occurrence of excessively large station counts in regions of strongly heterogeneous 

station spacing. 

4. The new 𝑅𝑝 is substituted in Step (2), and Steps (2)-(4) are iterated a specified number 

of times, I. Final values of 𝑅𝑝 are incorporated in Eq. (10) to generate the interpolation 

weights Wi used in predictions for all days at the point in question.  

The interpolation method for a given set of observations and a given prediction grid is 

defined by the four parameters R, I, N, and a. Given an arbitrary variable 𝑥𝑖, measured at 

each of the i = (1, ..., n) observation points, values for the interpolation parameters are 

specified once and held constant over all days and all prediction points. Taking the case 

of a single prediction point on a single day, the interpolated value 𝑥𝑝  is determined in 

general  



𝑥𝑝 =  ∑ 𝑊𝑖𝑥𝑖𝑛
𝑖=1
∑ 𝑊𝑖
𝑛
𝑖=1

                                                                                                             (14) 

 

3.2 Interpolation Implementation 
 

Our implementation of these methods relied on several internal MATLAB functions. The 

following gives a brief explanation of these functions followed by an explanation of our 

implementation. 

For generating uniform random numbers, two functions have been used: 

• Unidrnd(N), which generates random numbers for the discrete uniform 

distribution with maximum N. 

• Unifrnd(A,B) returns an array R of random numbers generated from the 

continuous uniform distributions with lower and upper endpoints specified by A 

and B, respectively. 

The interpolation started over plain surface using random observation (sensor) locations 

defining random value for each observation point. Unidrnd(N) MATLAB function is 

used to construct our locations, while unifrnd(-1,1) built normally distributed value 

between -1 and 1 for each of observation points. IDW acts better in this circumstances 

(MSEIDW=0.47, MSETGF=0.6), but the values of our sensors don’t have any spatial 

correlations with each other. In other words, there was no discernable pattern between 

values with keeping in mind that the very first concept of all interpolation methods is: the 

objects which are closer to each other, are more alike. This idea encouraged us to change 

the testing criteria to a more realistic fashion. This task was performed by adding 



Gaussian distributions to the plain surface with MATLAB peaks function (Peaks is a 

function of two variables, obtained by translating and scaling Gaussian distributions. 

Peaks can be defined as a mixture of 3-D Gaussian distributions) in order to get 

functional spatial distribution. The conventional Peaks function is demonstrated as 

below: 

 

Figure 14 Conventional peaks function 

 

 

3.3 Test validation procedure: Mean Square Error (MSE) 
 

To evaluate comparatively the performance of each interpolation method in each testing 

circumstances we employed mean square error. The algorithm of MSE is described as 

below: 

𝑀𝑆𝐸𝐼𝐷𝑊 𝑜𝑟 𝑇𝐺𝐹 = 1 𝑛� ∑ (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)2𝑛
𝑖=1                                                                  (15) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 



While the sensors locations are random with random values each time, the delivered MSE 

value in each run cannot identified as a good judgmental tool because of wide tolerance 

which is demonstrated as below while dealing with 10 sensors. 

        

                  

 

 

 

 

 

 

 

  Figure 16 MSE distribution IDW (10 sensors included) 

 

  Figure 15 MSE distribution TGF (10 sensors included) 



The solution of reaching to the constant value of MSE can be provided by running our 

models in big significant trials until finding statistics convergence, in such a way that 

MSE in each trial will be added to the previous MSE values, and then the summation will 

be averaged.  

 

3.4 Parameterizing of Models Over Peaks Data 
 

3.4.1 Truncated Gaussian Filter Parameter Justification 
 

TGF is so sensitive to its parameters such as: Shape parameter (∝), truncation radius (𝑅𝑝) 

and, number of iterations (i), and in each different criteria it needs precisely selected 

parameters dependent on the underlying data pattern which should be obtained by trial 

and error. (Thornton et al. 1997 [21]). We applied parameterization of the TGF model for 

the peaks data by a process in which one parameter was varied while the rest were held 

constant. The value of the varied parameter that minimized the MSE was selected.  

 

3.4.2 Inverse Distance Weighting Parameter Justification 
 

IDW’s parameter which should be justified is number of included neighbors (P) which 

indicates that it could have more robust functionality than TGF in the real world. 

Table 3 displays the result summery of our trial and errors for both models in different 

criteria. The most left cells indicate the parameters. The parameters which remained 



constant are shown in red-colored cells. The yellow highlighted band shows the best 

achieved results which were applied as our TGF parameters.  

    Table 3 Result summery of parameter justifications of IDW and TGF 

 

3.5 Test of Interpolation Performance 
 

After parameters justifications the interpolation models were ran. In each step of running 

the number of sensors was increased for sake of visioning the possible privilege of either 



model based on available sensors number. In each run, the senor values were assigned 

randomly from the continuous uniform distribution between [-1, 1] as well as sensor 

locations which were assigned randomly from discrete uniform distribution. The 

following number of sensors was applied: 10, 20, 40, 80, 160, 320, and 640 respectively.   

 

 

 

                                                                                             

 

 

 

 

 

 

           Figure 18 MSE vale TGF Number of sensors: 10 
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                                              Figure 17 MSE value IDW Number of sensors: 10 
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      Figure 20 MSE value TGF, Number of sensors: 20 
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                                             Figure 19 MSE value IDW, Number of sensors: 20 

              Figure 21 MSE value IDW, Number of senosrs: 40 



  

        Figure 22 MSE value TGF, Number of sensors: 40 

 

 

 

 

 

 

 

 

 

                                               Figure 24 MSE value TGF, Number of sensors: 640 
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      Figure 23 MSE value IDW, Number of sensors: 640 

 



           

Figures 25 and 26 demonstrate sensor values versus interpolated values via TGF and 

IDW methods. Red lines represent sensor values, and Black lines represent interpolated 

values, and Table 4 provided the summery of MSE results. The fact that black line from 

IDW method follows red line better than that of TGF together with less IDW’s MSE than 

TGF’s MSE, indicates that IDW does slightly better job with considering that TGF 

interpolation takes much more time than IDW due to its iteration procedure. Moreover, in 

each criterion TGF needs new parameter adjustments. 

 

        Figure 25 Sensor value Vs. interpolated value from IDW 
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     Figure 26 Sensor value Vs. interpolated value from TGF 



                                      

                                      Table 4 MSE values IDW and TGF 

Number of  MSE Computation time 

sensors IDW TGF IDW TGF 
10 2.48 3.01     
20 2.48 3.01     
40 1.56 1.97     
80 0.8 1.04 <10sec <1800sec 

160 0.7988 1.039 <10sec <3600sec 
320 0.7986 1.039 <70sec 8000sec 
640 0.079 0.101 <120sec 10800sec 

 

 

3.6 Defining a More Realistic Surface 
 

Working with the peaks function presented some challenges. The peaks function is too 

peaky in some parts, and much of the surface values approximately equal to zero. In fact, 

spatial data patterns like this are rare in rapidly mixed environment such as the near-earth 

atmosphere (although they can be found in the subsurface or in rainfall patterns). For this 

reason we came up with an idea of constructing smoother surface which consists of four 

Gaussian distributions with the ability to changing the smoothness of our peaks with 

increasing the standard deviation of each distribution. In fact heights of each peak are 

under control by changing mean value of each distribution. The new surface is illustrated 

as below. 

 

 



 

 

 

 

Surface with smooth Gaussian distributions can examine models behavior in a more 

realistic condition. Because this study purpose is to observing any possible privilege of 

either model, simple inclined plane was also added to our comparison field for sake of 

observing the methods behavior in this contrived circumstance. The sample inclined 

surface can be seen in the following figure. 

 

 

        Figure 28 Inclined surface 
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                  Figure 27 Surface with Gaussian distributions 



3.7 Test of Interpolation over regions with “Sparse & Clusters” of sensors 
 

One of the stated benefits of TGF over the rest of interpolation methods is the better 

results in situations of dealing with clusters of sensors in some points and sparse number 

of sensors in the whole area (Thornton et al. 1997 [21]). For the purpose of comparing 

our two models in these circumstances we defined areas with cluster of sensors by a 

square which contains 8 sensors. The sample field is demonstrated in the below image. In 

this step of experiment we are comparing TGF with IDW when the sensor distribution 

contains both clusters and sparse locations while the number of clusters & sparse points 

will increase in each run.  

 

 

 

 

 

 

Table 5 Shows the calculated MSE over two surfaces while the number of clusters is 

increasing (There is no relationship between magnitudes of MSE in two surfaces because 

the range of data values [z-axis] is different in each criterion, and the idea was just 

comparing values over two methods). The result of this test indicates, however TGF acts 

       Figure 29 Sparse and cluster distribution of sensors 



better than IDW for prediction of cluster centers, but the overall performance of IDW 

over whole surfaces is slightly more accurate than TGF. 

 

  Table 5 MSE values for inclined surface and Gaussian surface 

Inclined Surface - Center of Cluster actual 
value 

Gaussian Surface - Center of Cluster actual 
value 

Vs. Interpolated Value Vs. Interpolated Value 

4points+1cluster 
MSE 

4points+1cluster 
MSE 

  1       1     

TGF 5000     7.1 TGF 0.71     0.049 

IDW 5115     7.3 IDW 0.7     0.0505 

Actual value 5000       Actual value 0.7       

8points + 2cluster 
MSE 

8points + 2cluster 
MSE 

  1 2     1 2   

TGF 5000 2604   7 TGF 0.71 0.512   0.04 

IDW 5115 2685   2.4 IDW 0.7 0.4732   0.02 

Actual value 5000 2600     Actual value 0.7 0.4976     

12points + 3cluster 
MSE 

12points + 3cluster 
MSE 

  1 2 3   1 2 3 

TGF 5000 2604 3107 6.8 TGF 0.71 0.512 1 0.039 

IDW 5115 2685 3080 1.9 IDW 0.7 0.4732 0.997 0.018 

Actual value 5000 2600 3100   Actual value 0.7 0.4976 1   

 

 

3.8 Defining the number of nearest neighbors in IDW 
 

In the IDW method defining the number of nearest neighbors will affect the quality of 

interpolator. The conventional IDW method uses constant number of nearest neighbors 

which should be defined as an input. IDW can be modified in such a way that the number 

of nearest neighbors which are involved in the interpolation procedure, vary based on the 



availability of sensors.  For better illustration of the conventional IDW and modified 

version, the general flowchart has been demonstrated as below, where RP,i is the distance 

between point of interest and neighbor point i. 

 

Figure 30 IDW and modified-IDW flowchart 

 

Here, the difference between IDW and the modified version will be discussed through the 

specific condition. In the sample cluster situation which has been demonstrated in fig31 2

                                                           
2  2,4,5, and 7 are equidistant 

 

if the number of nearest neighbors is set by five, the model will miss three observation 

points. IDW acts like this: first it picks four closer equidistant points 2, 4, 5, and 7. for the 

fifth nearest neighbor it randomly picks one of the equidistant points 1, 3, 6 or 8. 

Modifying IDW such that all four of the points 1, 3, 6, and 8 are included in the 

interpolator is a more logical strategy than picking only one of them at random.  

    1,3,6, and 8 are equidistant 



 

 

 

 

 

Tests for capturing the ability of “center of clusters” interpolation accuracy, and MSE 

values over surface were run between conventional IDW and our modified version. Table 

below demonstrates these results. 

 

    Table 6 MSE values from IDW and M-IDW 

Center of Cluster Center of Cluster IDW M-IDW MSE 

 Index Actual Value   IDW M-IDW 
1 0.7043 0.7002 0.7002 1st run 0.0235 0.0236 

2 0.4976 0.4732 0.4732 2nd run 0.0229 0.0229 

3 1.003 1 1.001 3rd run 0.0186 0.0191 

4 1.107 1.093 1.093 4th run 0.02 0.0206 

5 0.162 1.156 1.156 5th run 0.021 0.022 

6 1.11 1.1 1.1 6th run 0.0257 0.0267 
 

 

 

 

 

 

Figure 31 Center of cluster and contributed sensors 



3.9 Conclusion 
 

The objective of this work is to identify a method suitable for spatially interpolating 

sparse air temperature observations.  The results of this series of experiments indicate that 

TGF does not have significant advantage in accuracy of resolving underlying field. 

Although TGF does better under certain sensor network topologies (i.e. clustered 

sensors), it performs worse overall (Avg.MSE IDW=.02, Avg.MSE TGF=.04).  Since, in the 

general case, a favorable sensor network topology cannot be assumed the average MSE 

values are more representative of the accuracy of the method in this general case.  

Furthermore, TGF requires several highly-sensitive parameters to be fit, which again 

renders it less generalizable to broad regions. Finally, the modified M-IDW has slightly 

better ability to calculate the center of cluster value but overall interpolated surface from 

conventional IDW has a bit closer value to the actual surface than value of M-IDW 

(AvgMSE,IDW=.0219, AvgMSE,M-IDW=.0224).  Thus, the results of this series of experiments 

identifies M-IDW as the most promising traditional interpolation method, however, it still 

does not provide an interpolated surface that accurately captures the spatial structure of 

the underlying data. 

 

 

 

 

 

 



 

Chapter 4 

Remote Sensing and its functionality in retrieving Land 
Surface Temperature 

 

4 Remote Sensing and its Functionality in Retrieving Land Surface 
Temperature 

4.1 Introduction 
 

Variability in meteorological state variables, such as daily maximum, and minimum 

temperature, that are poorly resolved by regional scale observation result in limitations in 

simulation of regional land atmosphere interactions. Surface temperature provides wide 

information on the state of the land-atmosphere interface, and is the driving factor of 

broad range of fundamental ecological and hydrological phenomena. Temperature data 

for regional land surface modeling is available from weather stations. Measurement 

uncertainty and sparse network coverage, lead to inconsistent sampling over the desired 

region (Jones et al. 2010 [39]). Moreover, the density of meteorological stations is low to 

capture a spatially distributed characterization since there is no data for some large 

regions (Marquinez et al. 2003 [40]). The other problem of air temperature interpolation 

and extrapolation from the ground meteorological stations is that air temperature depends 

on many local parameters that affect its estimation such as; altitude, sun expose, terrain 

concavity and distance from coast which cannot be measured by conventional 

interpolation and extrapolation methods. These limitations encouraged meteorologists to 



focus on satellite remote sensing for tasks such as simulation of regional land atmosphere 

interactions. Satellite sensors provide observations for monitoring, and predicting 

regional and urban air parameters. These sensors provide comprehensive geospatial 

information with both qualitative imagery and quantitative data (Engel et al. 2005 [41]). 

Constraints on the spatial resolution of early satellites resulted in measurement 

uncertainty, as Becker and Li 1990 [42], Dozier and Wan 1994 [43]; concluded that 

regional weather and climate prediction was not possible to perform operationally due to 

large uncertainties in the retrieval algorithms. They stated that spatial scales of 8 km will 

cause 1-4 K measurement uncertainties. 

One of earliest algorithms for the remote sensing of land surface temperature has been 

introduced by Brutsaert et al. (1993) [44] which used surface temperatures (LST) derived 

from measurements by the advanced very high resolution radiometer (AVHRR) on-board 

the NOAA-9 satellite integrated with collocated temperature and wind soundings in the 

boundary layer to determine surface sensible and latent heat fluxes from forests in south-

western parts of France. They came up with conclusion that it is necessary to achieve 

high accuracy in the satellite-retrieved LST in order to reduce the uncertainty in the 

estimated surface latent heat fluxes. Sun et al. 2002 [45]; retrieved land surface 

temperature from NOAA/AVHRR data. They applied a split-window technique for 

atmospheric corrections. 

Sun and Pinker (2003; 2009) [46, 47] introduced algorithms for estimating of LST using 

observations from the Geostationary Operational Environmental Satellite (GOES). The 

GOES system uses geosynchronous satellites (a geosynchronous satellite is a satellite that 

http://en.wikipedia.org/wiki/Geosynchronous_satellite�
http://en.wikipedia.org/wiki/Satellite�


orbits such that coverage repeats regularly over points on the earth over time) which have 

been a basic element of United States weather monitoring and forecasting since 1974.  

One of the easiest methods to estimate air temperature is introduced by Mendez (2004) 

[48] in the Limpopo river watershed in Mozambique where air temperature is estimated 

from vertical temperature profiles provided by the moderate resolution imaging 

spectroradiometer (MODIS) sensors. Later, (Flores et al. 2009 [49]) estimated air 

temperature over Chile through atmospheric profiles provided by MODIS sensor on a 

regional level.  

In the following section reviews about the United States’ Earth Observing System with a 

special focus on about the sensor used in this research, the moderate resolution imaging 

spectrophotometer (MODIS). 

 

4.2 Earth Observing System (EOS) 
 

The United States Congress instituted the U.S. Global Change Research Program in 1990 

for purpose of understanding the importance of studying global dynamics. NASA’s Earth 

Science Enterprise is making extensive contributions to the program through its Earth 

Observing System (EOS). Through EOS, National Aeronautics and Space Administration 

(NASA) is gathering the national and international scientific communities to design, 

develop, and implement advanced satellite sensors that collect data across a wide 

spectrum of energy including of ultraviolet (UV), visible, infrared (IR), and microwave. 

These sensors enable NASA to collect multi-year data sets that will help to answer 

questions about global change. 



4.3 Moderate Resolution Imaging Spectrophotometer (MODIS) 
 

The Moderate Resolution Imaging Spectrophotometer (MODIS) is a multi-spectral 

imaging instrument that is carried aboard both the Terra and Aqua satellites; it takes 

measurements all day, every day; and it has a wide field view. Coverage frequency of 

MODIS system complements other imaging systems such as Landsat’s Enhanced 

Thematic Mapper Plus (ETM+), which covers the earth in higher spatial details (the 

spatial resolution of ETM+ is 30 m [60 m - thermal, 15-m pan] whereas the spatial 

resolution of MODIS is 250-1000m), but can only image a given area once every 16 

days.  Thus, although the ETM+ sensor has a higher spatial resolution, its temporal 

resolution too low to capture many of rapid biological and meteorological changes that 

can be observed by the higher temporal resolution MODIS sensor. This resolution trade-

off is due to the fact that, spatial and temporal resolutions of a satellite thermal sensor are 

anti-correlated, meaning that a high spatial resolution is related with low temporal 

resolution and vice versa (Stathopoulou & Cartalis, 2009 [28]). 

 

The first EOS satellite launched, called Terra, was launched on December 18, 1999, 

carrying five remote sensors. Terra's3 orbit passes the earth from north to south across the 

equator in the morning. A second EOS satellite, Aqua4

                                                           
3 Terra is a multi-national, multi-disciplinary mission involving partnerships with the aerospace agencies of 
Canada and Japan. Managed by NASA’s Goddard Space Flight Center, the mission also receives key 
contributions from the Jet Propulsion Laboratory and Langley Research Center. (Retrieved from 
http://modis.gsfc.nasa.gov/) 

 passes south to north over the 

equator in the afternoon. This tandem coverage, enables the two satellites to capture the 

4 The Aqua mission is a part of the NASA-centered international Earth Observing System (EOS). Aqua was 
formerly named EOS PM, signifying its afternoon equatorial crossing time. (Retrieved from 
http://modis.gsfc.nasa.gov/) 



same area of the earth in the morning and the afternoon, the two satellites will help 

scientists ensure the accuracy of MODIS and the other instruments aboard Terra and 

Aqua by optimizing cloud-free remote sensing of the surface and diminishing any optical 

effects like shadows or brightness that are unique to morning or afternoon sunlight. Terra 

MODIS and Aqua MODIS viewing the entire Earth's surface every 1 to 2 days, getting 

data in 36 spectral bands, or groups of wavelengths. These data will improve 

understanding of global dynamics and processes occurring on the land, in the oceans, and 

in the lower atmosphere. 

MODIS plays an important role in the development of validated, global, interactive Earth 

system models able to simulate, and predict global changes accurately which assists the 

policy makers in making vital decisions concerning the environment protection.  

 

 

 

 

 

 

 

 



4.3.1 MODIS technical Specifications 
 

Detailed MODIS technical Specifications have been listed in the following table. 

Table 7 MODIS technical Specifications 

Orbit 705 km     

Scan Rate 20.3 rpm, cross track   
Swath Dimensions 2330 km (across track) by 10 km (along track at nadir) 

Size 1.0 x 1.6 x 1.0 m   
Weight 250 kg 

  Power 225 W (orbital 
average) 

  Data Rate 11 Mbps (peak daytime) 
 Quantization 12 bits 

  Spatial Resolution 250 m (band 1-2), 500 , (bands 3-7), 1000m (bands 8-36) 

Primary Use Band Bandwidth 
Spectral Required 

Radiance5 SNR6 
Land/Cloud 1 620-670 21.8 128 

Boundaries 2 841-876 24.7 201 

Land/Cloud 3 459-479 35.3 243 

Properties 4 545-565 29 228 

  5 1230-1250 5.4 74 

  6 1628-1652 7.3 275 

  7 2105-2155 1 110 

Ocean color/ 8 405-420 44.9 880 

Phytoplankton/ 9 438-448 41.9 838 

Biogeochemistry 10 483-493 32.1 802 

  11 526-536 27.9 754 

  12 546-556 21 750 

  13 662-672 9.5 910 

  14 673-683 8.7 1087 

  15 743-753 10.2 586 

  16 862-877 6.2 516 

Atmospheric 17 890-920 10 167 

Water Vapor 18 931-941 3.6 57 

  19 915-965 15 250 

                                                           
 
 
5 (W/m2-μm-sr) 
6 SNR=Signal-to-noise ratio 



 

Primary Use Band Bandwidth 
Spectral Required 
Radiance NEΔT 7 

Surface/Cloud 20 3.660-3.840 0.45 0.05 

Temperature 21 3.929-3.989 2.38 2 

  22 3.929-3.989 0.67 0.07 

  23 4.020-4.080 0.79 0.07 

Atmospheric 24 4.433-4.498 0.17 0.25 

Temperature 25 4.482-4.549 0.59 0.25 

Cirrus Clouds 26 1.360-1.390 6 1503 

Water Vapor 27 6.535-6.895 1.16 0.25 

  28 7.175-7.475 2.18 0.25 

  29 8.400-8.700 9.58 0.05 

Ozone 30 9.580-9.880 3.69 0.25 

Surface/Cloud 31 10.780-11.280 9.55 0.05 

Temperature 32 11.770-12.270 8.94 0.05 

Cloud Top 33 13.185-13.485 4.52 0.25 

Altitude 34 13.485-13.785 3.76 0.25 

  35 13.785-14.085 3.11 0.25 

  36 14.085-14.385 2.08 0.35 

 

It should be stated that NASA report Bands 1 to 19 in nanometer scale (nm), while they 
use micrometer (μm) scale for Bands 20 to36. 

  

 

 

 

 

 

 
                                                           
7 NEΔT=Noise-equivalent temperature difference  
 



4.3.2 File Format of land surface temperature (LST) Products 
 

The MODIS land surface temperature (LST) products are produced as a series of seven 

products which are archived in Hierarchical Data Format – Earth Observing System 

(HDF-EOS) format files. HDF is the standard archive format for EOS Data information 

System (EOSDIS) products which is developed by the National Strength and 

Conditioning Association (NSCA). 

The LST product files contain attributes (metadata) and scientific data sets (SDS) with 

local attributes. Summary of the MODIS LST data products is demonstrated in table 8. A 

level (L2) product is a geophysical product in latitude and longitude orientations; it has 

not been temporally and or spatially manipulated, while level 3 (L3) product is a 

geophysical product which has been manipulated temporally and or spatially [50]. 

          Table 8 MODIS LST data products 

Earth Science Data Product  Nominal Data Spatial Temporal Map  
Type (ESDT) Level Array Dimensions Resolution Resolution Projection 

MOD11_L2 L2 
2030 or 2040 lines 

1km at nadir Swath(scene) 
None 

by 1354 pixels/line ( lat, lon 
Referenced) 

MOD11A1 L3 
1200 rows by 1km 

Daily Sinusoidal 1200 columns actual 
.927km 

MOD11B1 L3 
200 rows by 6km 

Daily Sinusoidal 200 columns actual 
5.56km 

MOD11A2 L3 
1200 rows by 1km 

Eight days Sinusoidal 1200 columns actual 
.927km 

MOD11C1 L3 360° by 180° 0.05° by 
0.05° Daily Equal-angle 

(Global) geographic 

MOD11C2 L3 360° by 180° 0.05° by 
0.05° Eight days Equal-angle 

(Global) geographic 

MOD11C3 L3 
360° by 180° 0.05° by 

0.05° Monthly 
Equal-angle 

(Global) geographic 
 



4.3.3 MOD 11 - Land surface temperature (LST) and Emissivity 
 

Aqua MOD11 and Terra MOD11 products are similar to each other. They both contain 

Level 2 and 3 LST and emissivity retrieved from MODIS data at spatial resolutions of 1 

km and 5 km over global land surfaces under cloudless conditions. The generalized split-

window LST algorithm will be applied to retrieve LST for MODIS pixels with known 

emissivity in bands 31 and 32 (mid infrared range). The physics based day/night LST 

algorithm is used to simultaneously retrieve surface band emissivity and temperatures 

from a pair of daytime and nighttime MODIS observations in bands 20, 22, 23, 29, and 

31-33 over all types of land cover. 

The Terra and Aqua and Aqua platforms provide the daily level 3 Land Surface 

Temperature at 1km spatial resolution in a tile raster format gridded in the Sinosuoidal 

projection. These products are called MOD11A1 and MYD11A1, respectively. Level 3 

products are geophysical products that have been temporally and/or spatially 

manipulated, and are usually in a gridded map projection format referred to as tiles which 

have a spatial extent of 10 degrees latitude by 10 degrees longitude at the equator. The 

tile coordinate system starts at point (0,0) in the upper left corner and proceeds right 

(horizontal) and downward (vertical). The first element is the horizontal tile number, and 

the second element corresponds to the vertical tile number.  



 

Figure 32 Gridded tile map projection format 

 

The state of New Jersey has been located within boundary of two tiles. These tiles 

include of (h12, v04), and (h12, v05). Figure below captured Eastern part of United 

States included gridded tiles, Yellow oval has pointed New Jersey area. 

 

Figure 33 New Jersey location with respect to tile projection 

 

 



4.4 Image Processing 
 

4.4.1 Converting HDF formatted files to GeoTIFF images 
 

Working with HDF formatted files is not convenient within the MATLAB mapping 

toolbox environment. Moreover, in order to integrate the data from multiple sensors, a 

common coordinate system must be applied, a process frequently referred to as data 

registration.  Thus, reprojection of the raw MOD11A1 and MYD11A1 data from the 

sinusoidal projection to NJ state plane coordinates was performed. NJ State Plane 

coordinates (NJSPC) are in US Survey Feet units, and are referenced to the North 

American Datum of 1983 (NAD83) horizontal geodetic datum. Appropriate range of 

NJSPC values for Easting is approximately between 193000 and 660000 ft. while 

appropriate range for Northing is approximately between 35000 and 920000ft. 

GDAL (Geospatial Data Abstraction Library) software was applied to reproject our HDF 

files and format the reprojected data in Geographical Tagged Image File Format 

(GeoTIFF) image files. GeoTIFF is an open source metadata standard which allows 

georeferencing information to be fixed within a Tagged Image File Format (TIFF) file. 

The potential additional information includes map projection, coordinate systems, 

ellipsoids, datums, and everything else necessary to create the exact spatial reference for 

the file. The sample of MOD11A1 Terra GeoTIFF images for 08/05 2006 are 

demonstrated as below which include LST profile over the region: 

 

 



 

Figure 34 Terra h12v04, 08/05/2006 

 

 

Figure 35 Terra h12v05, 08/05/2006 

 

4.4.2 MODIS outliers 
 

The MODIS11A1 data, has a nominal spatial resolution of 1km (actual resolution: 0.927 

km) which means each pixel size is 0.927 km by 0.927 km. logically the difference 

between temperature values of neighbor pixels, specifically for the regions which has 

same land use, should be in a same range in each direction (North to South, and West to 

East).  

Exploratory analysis on the case study region revealed that there were many anomalous 

pixels that exhibited temperatures that were dramatically higher or lower than their 



immediate neighbors. For instance, on 06/13/2006 a 3 by 3 set of pixels near the 

Burlington county border had an average temperature of 82°F whereas a single pixel in 

the center of this grouping had a value of 102°F. For the purpose of this study, such 

pixels were considered as MODIS outliers. Within the MODIS data, the difference 

between every adjacent pixels in main directions (North to South, and East to West) was 

calculated. The probability density plot of these residuals are provided as below where 

EWdata corresponds to pixel by pixel temperature residuals in East to West direction, and 

NSdata corresponds to pixel by pixel temperature residuals in North to South direction. 

 

 

       Figure 36 EWdata density plot                                    figure 37 NSdata density plot 
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Probability plots of same data: 

 

       Figure 38 EWdata probability plot 

 

 

 

 

 

 

 

Using these distributions, a threshold filter was defined to remove outliers. This filter as    

defined to remove pixels that have an absolute difference of 3.2906σ (σ: standard 

deviation), which represents a 99.9% confidence interval around the local average.  Thus, 

we can expect that the filter will only misclassify valid measurements 0.1% of the time. 
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                Figure 39 NSdata probability plot 



4.5 Ground-Based Temperature (TG) Vs. MODIS-Based Temperature 
(TM) 

 

The following figures illustrate the representativeness of the MODIS-based temperature 

(TM) for capturing the behavior of the daily min/max temperature measured by the 

Cooperative Observer Network Gauges. Data from August 2006 over our case study 

region was selected for this qualitative analysis. Following graphs demonstrate daily 

Ground-Based Maximum and Minimum Temperature for meteorological stations which 

had available data over selected time period (23 stations) in addition of corresponded 

Terra and Aqua delivered temperature. The values which lay directly on the x-axis 

represent the case where no data available from either the MODIS or Cooperative 

Observer Network sensors. 

 

 

    Figure 40 Atlantic city International Airport TG versus TM                  Figure 41 Beleplain Stn Forest TG versus TM 
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                     Figure 42 Canoe Brook TG versus TM                                       Figure 43 Cape May 2 NW TG versus TM 

 

 

 

 

  
 

                 Figure 44 Cranford TG versus TM                                          Figure 45 Charlottesburg TG versus TM 
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               Figure 46 Estell Manor TG versus TM                                       Figure 47 Flemington 5 NNW Tg versus TM 

 

 

 

 

  
 

               Figure 48 Free Hold-Marlboro TG versus TM                             Figure 49 Hammonton 1 NE TG versus TM 
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                      Figure 50 Harrison TG versus TM                                             Figure 51 Hightstown 2 W TG versus TM 

 

 

 

 

  
 

                  Figure 52 Indian Mills 2 W TG versus TM                    Figure 53 Millville Municipal Airport TG versus TM 
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                  Figure 54 Moorestown TG versus TM                                     Figure 55 New Brunswick 3 SE TG versus TM 

 

 

 

 

  
 

       Figure 56 Newark International Airport TG versus TM                              Figure 57 Plainfield TG versus TM 
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                      Figure 58 Sussex 2 NW TG versus TM                                   Figure 59 Seabrook Farms TG versus. TM 

 

 

 

 

    

                        Figure 60 Tuckerton TG versus TM                            Figure 61 Toms River TG versus TM 
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Station graphs show that TM (terra) & TM (aqua) are more likely to appear near the TG 

(max) trend than TG (min) trend. Which indicate us the potential of existent correlation 

between TG (max) & TMs is higher than that of between TG (min) & TMs. Moreover, it 

can be illustrated that generally TG (max) and TM (terra) are more alike than other pairs 

of temperature data. This will be quantified and concluded in the following sections.  

 

4.6 Mathematical Integration of Ground-based & Remote-sensed 
Temperature Data 

 

A linear relationship between the ground-based temperature and remote-sensed 

temperature can be defined as: 

𝑇𝐺 = 𝑓(𝑇𝑀  )                                                                                                                     (16) 

𝑇𝐺 = 𝑎.𝑇𝑀 + 𝑏 = 𝑓(𝑇𝑀)                                                                                                 (17) 

The difference between 𝑇𝐺 and 𝑇𝑀  represents the error distribution of the linear model: 

        Figure 62 Wertsville 4 NE TG versus TM 
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𝑇𝐺 −  𝑇𝑀 =  Ɛ𝑒𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                                                                                        (18) 

The error distribution can be defined either locally or regionally, where local error refers 

to a pairwise comparison at each station location, and regional error refers to the residual 

distribution of all pairs of stations in the region as shown below: 

𝐸𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛:   𝑇𝐺 − 𝑇𝑀 = Ɛ𝑇𝐺,𝑇𝑀
𝑙𝑜𝑐𝑎𝑙                                                                  (19) 

 𝐴𝑙𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛:   𝑇𝐺 −  𝑇𝑀 =  Ɛ𝑇𝐺,𝑇𝑀
𝑎𝑙𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠                                                         (20) 

Determining whether Ɛ𝑇𝐺,𝑇𝑀
  is generalizable (i.e. not location dependent) will reveal 

whether a spatially independent model can be used to translate the MODIS temperature 

data to estimate daily min/max temperature, or whether a spatially dependent model is 

necessary. The following section discusses how spatial dependency was tested. 

 

4.7 Test of spatial dependency 
 

In statistics, spatial dependence is a measure of the associative dependence between 

independently measured values in a temporally or in situ ordered set, determined in 

samples selected at positions with different coordinates in a sample space. Spatial 

dependency is verified by applying analysis of variance to the variance of a set and the 

first variance term of the ordered set (closest/shortest lag) and comparing the observed F-

value between these variances with values of F-distributions at 5% probability with 

applicable degrees of freedom. In MATLAB, vartest2(X,Y) performs an F test of the 

hypothesis that two independent samples, in the vectors X and Y, come from normal 

http://en.wikipedia.org/wiki/Mathematical_statistics�
http://en.wikipedia.org/wiki/Statistical_independence�
http://en.wikipedia.org/wiki/Sample_space�
http://en.wikipedia.org/wiki/Analysis_of_variance�
http://en.wikipedia.org/wiki/F-distribution�
http://en.wikipedia.org/wiki/F-distribution�
http://en.wikipedia.org/wiki/F-distribution�


distributions with the same variance, against the alternative that they come from normal 

distributions with different variances. The result is H = 0 if the null hypothesis (variances 

are equal) cannot be rejected at the 5% significance level, or H = 1 if the null hypothesis 

can be rejected at the 5% level. Table below demonstrates the results of spatial 

dependency test. 

Table 9 Results of spatial dependency test 

 

This result can be interpreted as; the general error distribution independent of spatial 

location does not exist, and this error should be applied locally.  

 

4.8 Error distribution over the state of New Jersey 
 

In order to understand the relationship between the ground-based and remote-sensed 

temperature residuals (𝑇𝐺 − 𝑇𝑀 ), and ancillary anthropogenic and microclimatologic 

features over the state of New Jersey, the plots of these residuals for available stations 

have been provided as below. The background of each map represents digital elevation 

model, and for each station location the population density value has been attached. The 

size of white circles corresponds to the magnitude of residual in such a way that, the 



bigger the circle is the more residual value it possesses. The plots for the time period of 

April 2006 to September 2006 have been demonstrated as below: 

 

Figure 61 Residual distribution plot (Left: April, Right: May) 

 

 

Figure 62 Residual distribution plot (Left: June, Right: July) 

 

 



 

Figure 63 Residual distribution plot (Left: August, Right: September) 

 

New Jersey is the most heavily urbanized state in the US, and it is proximal to the 1st 

(New York City) and 6th (Philadelphia) largest cities in the US.  As it can be seen from 

the images the biggest magnitudes of residuals are corresponded to the regions close to 

New York City which possess the highest population density over the state of New 

Jersey.   

 

4.9 Mathematical function of temperature interpolator model 
 

In order to map the temperature, the following spatial interpolation model was defined: 

𝑇𝑖 = 𝑇𝑀𝑖 + ∆𝑆                                                                                                                 (21) 

Where, 𝑇𝐺,𝑘  is the 𝑘 -th nearest temperature of available meteorological ground-based 

station, and 𝑇𝑀,𝑘 is the retrieved temperature of 𝑘-th nearest meteorological station from 



the MODIS satellite data. The simplest form of this model is for k=1, which is 

comparable with conventional nearest neighbor interpolation algorithm. 

𝑖𝑓 𝑘 = 1 

𝑇𝑖 = 𝑇𝑀𝑖 + 𝑇𝐺,𝑘 − 𝑇𝑀,𝑘                                                                                                   (22) 

This model is hereafter referred to as the MODIS-enhanced Nearest Neighbor 

interpolator. 

 

4.10 Leave one out cross validation Test 
 

Leave-one-out cross-validation (LOOCV) involves using a single observation from the 

original sample as the validation data, and the remaining observations as the training 

data. Here, the validation dataset is ground based and remote sensed temperature 

residuals of point i (𝑇𝐺,𝑖 − 𝑇𝑀,𝑖), and the training dataset is the same value of nearest 

neighbor station(𝑇𝐺,𝑘 − 𝑇𝑀,𝑘). The test run with terra data and then with aqua data to 

capture which one has better correlation with station maximum temperature than the 

other. Below figures demonstrates test results distribution.   



 

Figure 64 LOOCV plot, Terra versus TGmax 

         

 

 

The more squeezed, the more correlation exists. Visually it can be seen that left figure is 

more squeezed. Moreover, the MSE value of left image is less than MSE value of right 

one. Which indicates that generally terra data has more correlation with stations 

maximum temperature than aqua data (MSEResiduals,terra=6.97 ,  MSEResiduals,aqua =7.48). 
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Figure 65 LOOCV plot Aqua versus TGmax 



4.11 Model Demonstration 
 

In this section, the interpolated temperature map over the state of New Jersey has been 

demonstrated for two random dates 04/02/2006 and, 06/18/2006. We expect the recent 

spatial interpolator model quantify anthropogenic, and microclimatological effects better 

than conventional methods, due to the fact that low density of meteorological stations 

cannot capture these features. For these two sample dates, Raw MODIS image, 

conventional nearest neighbor interpolation map, IDW map with 5-NN, and MODIS 

enhanced nearest neighbor algorithm have been demonstrated. The reason for providing 

raw MODIS image is to see which model can produce map of temperature with respect to 

regional parameters such as urban heat effect, proximity to water bodies, altitude, and etc. 

The first four images correspond to the April second of 2006 in order that, the top left 

image shows the raw MODIS data, the top right image retrieved from MODIS enhanced 

interpolation method, the bottom left image is the output of 1-nearest neighbor algorithm, 

and the bottom right shows the map of inverse distance weighting method. The following 

next four images correspond to the 18th of June 2006 in the same line up.  

 

 

 

 

 

 

 

 



Maps of temperature for 04/02/2006 

 

 

 

  

 

 

 

Figure 67 MODIS enhanced NN interpolated gauge data 04/02/2006 

 

 

                    Figure 66 Raw MODIS data 04/02/2006 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Figure 69 IDW interpolated gauge data 04/02/2006 

 

 

 

   Figure 68 NN interpolated gauge data 04/02/2006 



Maps of temperature for 06/18/2006 

 

 

                  

 

 

 

 

 

 

 

 

 

 

Figure 71 MODIS enhanced NN interpolated gauge data 06/18/2006 

 

Figure 70 Raw MODIS data 06/18/2006 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73 IDW interpolated gauge data 06/18/2006 

 

 

    Figure 72 NN interpolated gauge data 06/18/2006 



4.12 Conclusion and results 
 

The most notable achievement of new introduced method as it can be seen from the 

interpolated maps is the ability of the model to capture temperature pattern revealed by 

the remote sensing observations.  This is the advantage of integrating both remote-sensed 

and ground-based data with each other. This integration allows us to explore the 

relationship between climatic elements (in our case, air temperature) as the dependent 

variable and climatic factors (independent geographic factors) better than conventional 

methods. Comparison of the mean squared error (MSE) values indicate that the simple 

format of the MODIS enhanced nearest neighbor method, which uses one nearest 

neighbor to determine the spatially dependent representativeness error between the 

MODIS sensor and the ground based min/max temperature, is more accurate than the 

conventional nearest neighbor method (MSEConventional 1-NN =0.84. MSEMODIS enhanced 1-

NN=0.81). Although the MSE value of IDW (MSEIDW NN=5=0.51) is slightly less than the 

MSE value of MODIS enhanced method, the IDW method over smoothes the 

temperature map. Thus, the new method produces a result with a similar estimation 

accuracy of IDW, but with a better characterization of the spatial variation of min/max 

temperature. 

 

 

 

 

 



 

Chapter 5 

Conclusion and Discussion 

5 Conclusion and Discussion 
 

Spatial interpolation of sparse air temperature observations has been a challenge among 

scientists which has arisen several spatial interpolation methods. In this study two 

fundamental weighted average models has been compared. Series of experiments indicate 

that TGF does not have significant advantage in accuracy of resolving underlying field. 

Although TGF does better under certain sensor network topologies (i.e. clustered 

sensors), it performs worse overall (Avg.MSE IDW=.02, Avg.MSE TGF=.04).  Since, in the 

general case, a favorable sensor network topology cannot be assumed the average MSE 

values are more representative of the accuracy of the method in this general case.  

Furthermore, TGF requires several highly-sensitive parameters to be fit, which again 

renders it less generalizable to broad regions. The modified M-IDW has slightly better 

ability to calculate the center of cluster value but overall interpolated surface from 

conventional IDW has a bit closer value to the actual surface than value of M-IDW 

(Avg.MSE,IDW=.0219, Avg.MSE,M-IDW=.0224).  Thus, the results of this series of 

experiments identifies M-IDW as the most promising traditional interpolation method, 

however, it still does not provide an interpolated surface that accurately captures the 

spatial structure of the underlying data. This could be the result of insufficient embedded 



temperature data density and complex interactions of the temperature data which makes 

the characterization of the relationship between local temperature and ancillary 

anthropogenic and microclimatologic features unclear. 

The new approached MODIS enhanced nearest neighbor method allows us to explore the 

relationship between climatic elements (in our case, air temperature) as the dependent 

variable and climatic factors (independent geographic factors) better than conventional 

methods which is the advantage of integrating both remote-sensed and ground-based data 

with each other. The comparison of the mean squared error (MSE) values indicate that 

the simple format of the MODIS enhanced nearest neighbor method, which uses one 

nearest neighbor to determine the spatially dependent representativeness error between 

the MODIS sensor and the ground based min/max temperature, is more accurate than the 

conventional nearest neighbor method (MSEConventional 1-NN =0.84. MSEMODIS enhanced 1-

NN=0.81). Although the MSE value of IDW (MSEIDW NN=5=0.51) is slightly less than the 

MSE value of MODIS enhanced method, the IDW method over smoothes the 

temperature map. Thus, the new method produces a result with a similar estimation 

accuracy of IDW, but with a better characterization of the spatial variation of min/max 

temperature. 

 

 

 

 



5.1 Future Work 
 

Our work has established the foundation for daily temperature mapping based on 

integration of embedded and remote sensed temperature data. Although, this work has 

reduced the existed gap in the challenge of capturing spatial structure of the underlying 

temperature map but this work can be expanded by applying and testing other reliable 

interpolation algorithms on embedded and remote sensed integrated dataset in order to 

increase the accuracy. More study over potential variety of trends between embedded and 

remote sensed temperature data could pave the way of reaching to more precise daily 

interpolated temperature map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I Appendix 
 

MATLAB Codes: 

Map of New Jersey in state plane coordinate system: 

clc 
close all 
clear all  
S = shaperead('nj_counties.shp') 
nx = 100; 
ny = nx; 
p=5;   %--- #of neighbors for interpolation 
scalefactor = 1; latlim = [38.5 41.5]; lonlim = [-76.7 -73.8]; 
[Z,refvec] = tbase(scalefactor,latlim,lonlim); 
mstruct = defaultm('tranmerc'); 
mstruct.geoid = almanac('earth','grs80','survey foot'); 
mstruct.origin=[38.8333 -74.5 0]; 
mstruct.falsenorthing = 0.0; 
mstruct.falseeasting = 492125.0; 
mstruct.scalefactor = 0.9999; 
[lat lon] = minvtran(mstruct, [S.X]', [S.Y]'); 
  
% ------Building reference matrix for elevation,based on 'tbase' info 
[x11 y11] = mfwdtran(mstruct, 41.5, -76.7); %--northing-easting 
pixel(1,1) 
[xnn y] = mfwdtran(mstruct, 41.5, -73.8); 
[x ynn] = mfwdtran(mstruct, 38.5, -76.7); %--northing-easting 
pixel(1,1) 
dx = (xnn-x11)/(numel(Z(:,1))-1); 
dy = (ynn-y11)/(numel(Z(:,1))-1); 
 R  = makerefmat(x11, y11, dx, dy); 
%mstruct = defaultm(mstruct); 
  
% Use projection to convert from state plane to geocoordinates 
[lat lon] = minvtran(mstruct, [S.X]', [S.Y]'); 
figure  
plot(lon, lat); 
  
  
%------------------Sensors with complete data--------------------------
---- 
b= load('availablestatoins112007.txt') 
SensorCoords = [ b(:,1) b(:,2)] 
[Sensors(1:3).Geometry] = deal('Point'); 
for i=1 : size(b(:,1)); 
    Sensors(i).Lat = SensorCoords(i,1); Sensors(i).Lon = 
SensorCoords(i,2); 
end 
  
%------------------Malfunctioned Sensors-------------------------------
---- 
f= load('stationcoordinatesmalfuntioned.txt') 



SensorCoordsMal = [ f(:,1) f(:,2)] 
[Sensors(1:4).Geometry] = deal('Point'); 
for i=1 : 26; 
    SensorsMal(i).Lat = SensorCoordsMal(i,1); SensorsMal(i).Lon = 
SensorCoordsMal(i,2); 
end 
  
% Inspect completed geostruct and its first member 
Sensors; 
Sensors(1) 
figure 
plot(lon, lat); 
hold on 
geoshow(Sensors); 
plot(SensorCoords(:,2), SensorCoords(:,1), 'ko'); 
hold off 
  
% Use projection to convert from geocoords to state plane coords(all 
% sensors) 
[x y] = mfwdtran(mstruct, SensorCoords(:,1), SensorCoords(:,2)); 
%Malfunctioned sensors 
[xm ym] = mfwdtran(mstruct, SensorCoordsMal(:,1), 
SensorCoordsMal(:,2)); 
% Now plot the sensor locations on the state plane map 
figure; 
 mapshow(S); 
 hold on 
colorbar; 
mapshow([S.X]', [S.Y]'); 
% mapshow(P); 
hold on 
plot(x,y,'k*'); 
hold on 
plot(xm,ym,'y*'); 

 

 

 

 

 

 

 

 

 



Seasonality Removal: 

clc 
clear 
close all 
%---35 Sensors, "each day of yr" temp represents average of 10yrs data( 
if it was 
%available) 
%--- column1:Tmax , column2: Tmin 
%--- h: sensor elevation 
%Station letter=SL 
%---Curve fitting General format: SinSL = SL0 + 
SL1.COS(omega*t)+SL2.SIN(omega*t)  
  
  
a=load('Athlant.Int.txt'); 
ha=60*ones(365,1); 
figure(1) 
scatter([1:size(a(:,1))],a(:,1),'bo') 
t=load('t.txt'); 
omega=2*pi*1/365; 
 uv=load('365daysOverNJ.txt'); 
a0max=sum(uv(:,1))/365; 
a1max=(2/365)*sum(uv(:,1).*cos(omega*t(:))); 
a2max=(2/365)*sum(uv(:,1).*sin(omega*t(:))); 
Sinamax=a0max+a1max*cos(omega*t(:,1))+a2max*sin(omega*t(:,1)); 
detrendamax=a(:,1)-Sinamax(:,1); 
a0min=sum(a(:,2))/365; 
a1min=(2/365)*sum(uv(:,2).*cos(omega*t(:))); 
a2min=(2/365)*sum(uv(:,2).*sin(omega*t(:))); 
Sinamin=a0min+a1min*cos(omega*t(:,1))+a2min*sin(omega*t(:,1)); 
detrendamin=a(:,2)-Sinamin(:,1); 
hold on 
plot(t(:,1),Sinamax,'k') 
figure(2) 
scatter(t,detrendamax) 
figure(3) 
scatter([1:size(a(:,1))],detrendamax(:,1),'bo') 
 

 

 

 

 

 

 

 



Autocorrelation and Partial Autocorrelation Functions: 

clc 
clear 
close all 
%Perform an analysis of the time series to determine stationarity and 
seasonality 
%----------------------------------------------------------------------
---- 
a1=load('detrendedaclsinosu.txt'); 
a2=load('vcxz.txt'); 
data=zeros(3650,2); 
  
data(:,1)=a1; 
data(:,2)=a2(1:3650,2); 
% data=load('vcxz.txt'); 
figure(1); 
plot(data(:,2), data(:,1)); 
title('Temperature (F)'); 
xlabel('Year'); 
ylabel('Maximum Temperature (F)'); 
% Calculate linear trend 
 A=[data(:,2) ones(size(data(:,2)))]; 
 m=(inv(A'*A)*A')*data(:,1); 
% Observing 'm' value shows that we dont have linear trend. 
% m = 0.0027, which shows slope is significantly zero. 
%----------------------------------------------------- 
NLags=700; 
NData=size(data,1); 
Lags = linspace(0,NLags,NLags+1); 
laggedData=zeros(NData-NLags,NLags+1); 
for i=1:NData-NLags 
    for j=0:NLags 
        laggedData(i,j+1)=data(i+j,1); 
    end 
end 
%Calculate **ACF=covariance(X(t),X(t-lag))/variance(X)** 
Covariance=cov(laggedData,1); 
ACF=Covariance(:,1)/Covariance(1,1); 
tmp=cumsum(ACF.^2); 
ACFBounds=2*(1/sqrt(NData)*(1+2.*tmp)); 
figure(2); 
plot(Lags,ACF,'ko-') 
ylim([-2 2]) 
title('Auto Correlation Function'); 
xlabel('Lag') 
ylabel('ACF') 
%Calculate partial autocorrelation function 
PACF=zeros(NLags+1,1); 
PACF(1)=1; 
for i=1:NLags 
    %Yule-Walker Equations 
    r=zeros(i,1); 
    R=zeros(i,i); 
    for j=1:i 
        r(j)=ACF(j+1); 



        for k=1:i 
            R(j,k)=ACF( abs(j-k)+1  ); 
        end 
    end 
    %R 
    %r 
    PHI=inv(R)*r; 
    PACF(i+1)=PHI(i); 
end 
PACFBounds = ones(NLags+1,1); 
PACFBounds = PACFBounds*2*1/sqrt(NData); 
figure(3); 
plot(Lags,PACF,'ko-') 
% ,Lags,PACFBounds,'m-',Lags,-PACFBounds,'m-'); 
title('PACF of Data'); 
xlabel('lag'); 
ylabel('PACF'); 
legend('PACF','95% Confidence Bounds'); 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Semivariogram Analysis: 

function [G] = semivariogram( Data, Lags, Dh, Theta, DTheta ) 
    G = zeros(size(Lags,1),1);     
    for i=1:size(Lags,1); 
        sum=0; 
        N=0; 
        for j=1:size(Data,1) 
            tmp = [Data(1:j-1,:);Data(j+1:size(Data,1),:)]; 
            [flag, heads]=findLaggedData(Data(j,:), tmp, Lags(i), Dh, 
Theta, DTheta); 
            if( flag ) 
                for k=1:size(heads,1) 
                  sum = sum+((Data(j,3)-heads(k,3) )^2); 
                  N = N+1; 
                end 
            end 
        end 
        G(i)= 1/(2*N)*sum; 
    end 
end 
 

Lags = 10000*[5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80]'; 
for i=1 : 14; 
    for j=2:15; 
        L(i,j)=sqrt((x(i+1)-x(i))^2+(y(j)-y(j-1))^2) 
    end 
end 
[G]=semivariogram(Data, Lags, 50000, 22.5, 22.5); 
  
    
  
  
figure(1) 
plot(Lags,G,'ko') 
xlabel('Distance (ft )'); 
title('Semivariogram of  Data'); 
 

 

 

 

 

 

 



Grid construction with random placement of sensors: 

clc 
clear 
close all 
  
%---------------------------------------------------------------------- 
%-----------------------Grid Construction------------------------------ 
%---------------------------------------------------------------------- 
  
%-----------------------Specification of the grid---------------------- 
dx = 0.01; %----x spacing 
dy = 0.01; %----y spacing 
imax = 2; %----max # of points in x direction 
jmax = 2;  %----max # of points in y direction 
%-------# of total cells = (imax-1)*(jmax-1) 
  
%-----------------------Construction----------------------------------- 
  
for i = 1:imax 
    for j = 1 : jmax 
        x(i,j) = (i-1)*dx; 
        y(i,j) = (j-1)*dy; 
    end 
end 
  
%---------------------------------------------------------------------- 
%--------------------------Random placement of sensors----------------- 
%---------------------------------------------------------------------- 
  
N = imax*jmax; 
M = 1; %-------------total number of sensors 
s(1) = unidrnd(N); %--------location of first sensor 
i = 2; 
while i<=M 
    R(i) = unidrnd(N); 
    while (min(abs(s(1:i-1)-R(i)))==0) 
        R(i) = unidrnd(N); 
    end 
    s(i) = R(i); 
    i = i + 1; 
end 
  
%---------------------------------------------------------------------- 
%--------------------------Random temperature assignment--------------- 
%---------------------------------------------------------------------- 
  
  
temp=zeros(imax,jmax); 
  
for i = 1:M 
    temp(s(i)) = unifrnd(-1,1); 
end 
 



Inverse Distance Weighting (IDW): 

clc 
close all 
clear 
p = 5; %------number of nearest neighbors 
[Xtrue,Ytrue]=meshgrid(-3:0.1:3,-3:0.1:3); 
a1=1;x01=-3;y01=-3;s1=1.2;v1=1.2; 
a2=1;x02=3;y02=3;s2=1;v2=1; 
a3=1;x03=0;y03=0;s3=2;v3=2; 
%  
a4=1;x04=3;y04=-3;s4=1.3;v4=1.3; 
z1 = a1*exp(-((Xtrue-x01).^2/2/s1^2)-((Ytrue-y01).^2/2/v1^2)); 
z2 = a2*exp(-((Xtrue-x02).^2/2/s2^2)-((Ytrue-y02).^2/2/v2^2)); 
z3 = a3*exp(-((Xtrue-x03).^2/2/s3^2)-((Ytrue-y03).^2/2/v3^2)); 
z4 = a4*exp(-((Xtrue-x04).^2/2/s4^2)-((Ytrue-y04).^2/2/v4^2)); 
Ztrue=z1+z2+z3+z4; 
figure(1) 
surf(Xtrue,Ytrue,Ztrue) 
view(0,90) 
Nrows = size(Xtrue(:,1),1); 
Ncols = Nrows; 
Nsamp = 52; 
Xsensor = 
[Xtrue(2,56),Xtrue(2,58),Xtrue(2,60),Xtrue(4,56),Xtrue(4,60),Xtrue(6,56
),Xtrue(6,58),Xtrue(6,60),Xtrue(56,2),Xtrue(56,4),Xtrue(56,6),Xtrue(58,
2),Xtrue(58,6),Xtrue(60,2),Xtrue(60,4),Xtrue(60,6),Xtrue(2,1),Xtrue(2,3
),Xtrue(2,5),Xtrue(4,1),Xtrue(6,1),Xtrue(6,3),Xtrue(6,5),Xtrue(4,5),Xtr
ue(30,28),Xtrue(32,28),Xtrue(34,28),Xtrue(30,30),Xtrue(34,30),Xtrue(30,
32),Xtrue(32,32),Xtrue(34,32),Xtrue(40,12),Xtrue(40,10),Xtrue(40,8),Xtr
ue(42,12),Xtrue(42,8),Xtrue(44,12),Xtrue(44,10),Xtrue(44,8),Xtrue(50,48
),Xtrue(50,52),Xtrue(48,50),Xtrue(48,48),Xtrue(48,52),Xtrue(52,48),Xtru
e(52,50),Xtrue(52,52),Xtrue(20,10),Xtrue(40,20),Xtrue(30,30),Xtrue(3,40
),Xtrue(30,5),Xtrue(18,50),Xtrue(60,1),Xtrue(8,8),Xtrue(60,60),Xtrue(60
,45),Xtrue(50,30),Xtrue(17,17)]; 
Ysensor = 
[Ytrue(2,56),Ytrue(2,58),Ytrue(2,60),Ytrue(4,56),Ytrue(4,60),Ytrue(6,56
),Ytrue(6,58),Ytrue(6,60),Ytrue(56,2),Ytrue(56,4),Ytrue(56,6),Ytrue(58,
2),Ytrue(58,6),Ytrue(60,2),Ytrue(60,4),Ytrue(60,6),Ytrue(2,1),Ytrue(2,3
),Ytrue(2,5),Ytrue(4,1),Ytrue(6,1),Ytrue(6,3),Ytrue(6,5),Ytrue(4,5),Ytr
ue(30,28),Ytrue(32,28),Ytrue(34,28),Ytrue(30,30),Ytrue(34,30),Ytrue(30,
32),Ytrue(32,32),Ytrue(34,32),Ytrue(40,12),Ytrue(40,10),Ytrue(40,8),Ytr
ue(42,12),Ytrue(42,8),Ytrue(44,12),Ytrue(44,10),Ytrue(44,8),Ytrue(50,48
),Ytrue(50,52),Ytrue(48,50),Ytrue(48,48),Ytrue(48,52),Ytrue(52,48),Ytru
e(52,50),Ytrue(52,52),Ytrue(20,10),Ytrue(40,20),Ytrue(30,30),Ytrue(3,40
),Ytrue(30,5),Ytrue(18,50),Ytrue(60,1),Ytrue(8,8),Ytrue(60,60),Ytrue(60
,45),Ytrue(50,30),Ytrue(17,17)]; 
Tsensor = 
[Ztrue(2,56),Ztrue(2,58),Ztrue(2,60),Ztrue(4,56),Ztrue(4,60),Ztrue(6,56
),Ztrue(6,58),Ztrue(6,60),Ztrue(56,2),Ztrue(56,4),Ztrue(56,6),Ztrue(58,
2),Ztrue(58,6),Ztrue(60,2),Ztrue(60,4),Ztrue(60,6),Ztrue(2,1),Ztrue(2,3
),Ztrue(2,5),Ztrue(4,1),Ztrue(6,1),Ztrue(6,3),Ztrue(6,5),Ztrue(4,5),Ztr
ue(30,28),Ztrue(32,28),Ztrue(34,28),Ztrue(30,30),Ztrue(34,30),Ztrue(30,
32),Ztrue(32,32),Ztrue(34,32),Ztrue(40,12),Ztrue(40,10),Ztrue(40,8),Ztr
ue(42,12),Ztrue(42,8),Ztrue(44,12),Ztrue(44,10),Ztrue(44,8),Ztrue(50,48
),Ztrue(50,52),Ztrue(48,50),Ztrue(48,48),Ztrue(48,52),Ztrue(52,48),Ztru



e(52,50),Ztrue(52,52),Ztrue(20,10),Ztrue(40,20),Ztrue(30,30),Ztrue(3,40
),Ztrue(30,5),Ztrue(18,50),Ztrue(60,1),Ztrue(8,8),Ztrue(60,60),Ztrue(60
,45),Ztrue(50,30),Ztrue(17,17)]; 
% % TSampIdx holds the i,j indices of the random test samples 
figure(2) 
scatter3(Xsensor, Ysensor, Tsensor, 50, Tsensor, 'filled'); 
view(0,90) 
  
tempIDW = zeros(Nrows,Ncols); %interpolated temperature 
for i = 1 : Nrows 
    for j = 1 : Ncols 
        for n = 1 : Nsamp 
            r(n) = sqrt(( Xsensor(n)-Xtrue(i,j) )^2 + ( Ysensor(n)-
Ytrue(i,j) )^2 ); 
        end 
        R = sort(r); 
        z = p; 
        x = z; 
        while R(z+1) == R(z) 
                x = z+1;   % x= new number of neighbors 
                z = z+1; 
        end 
        rnearest = R(1:x); 
        d=zeros(1,x); 
        for m = 1 : x; 
             
            if rnearest(m)==0 
                d(1,m) = 1; 
                 
            else 
                d(1,m) = rnearest(m); % test point distance from gauges 
                d; 
            end 
        end 
        I = ones(1,x)./d; % inverse distance matrix 
        for k = 1 : x 
            for q = 1 : Nsamp 
                r(q) = sqrt(( Xsensor(q)-Xtrue(i,j) )^2 + ( Ysensor(q)-
Ytrue(i,j) )^2 ); 
                if r(q)==rnearest(k) 
                    Tnearest(k) = Tsensor(q); 
                end 
            end 
        end 
        tempIDWm(i,j) = sum (Tnearest(1:x).*I)/sum(I); 
    end 
end 
 figure(4) 
 surf(Xtrue,Ytrue,tempIDWm) 
 color bar 
 view(0,90) 
title('IDW'); 
 

 



Truncated Gaussian Filter: 

clc 
clear 
close all 
  
%-----------------------Specification of the grid----------------------
---- 
dx = 0.01; %----x spacing 
dy = 0.01; %----y spacing 
imax = 101; %----max # of points in x direction 
jmax = 101;  %----max # of points in y direction 
%-------# of total cells = (imax-1)*(jmax-1) 
%-----------------------Construction----------------------------------- 
  
for i = 1:imax 
    for j = 1 : jmax 
        x(i,j) = (i-1)*dx; 
        y(i,j) = (j-1)*dy; 
    end 
end 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
%---------------------------------------------------------------------- 
%--------------------------Random placement of sensors----------------- 
%---------------------------------------------------------------------- 
N = imax*jmax; 
M = 20; %-------------total number of sensors 
s(1) = unidrnd(N); %--------location of first sensor 
i = 2; 
while i<=M 
    R(i) = unidrnd(N); 
    while (min(abs(s(1:i-1)-R(i)))==0) 
        R(i) = unidrnd(N); 
    end 
    s(i) = R(i); 
    i = i + 1; 
end 
  
%---------------------------------------------------------------------- 
%--------------------------Random temperature assignment--------------- 
%---------------------------------------------------------------------- 
temp=zeros(imax,jmax); 
  
for i = 1:M 
    temp(s(i)) = unifrnd(-1,1); 
end 
  
  
%---------------------------------------------------------------------- 
%--------------------------R_p estimation------------------------------
---- 



%---------------------------------------------------------------------- 
alpha = 3; 
ww = (1-exp(-alpha))/alpha - exp(-alpha); 
I = 20; 
NN(1:I-1) = 2*M; 
NN(I) = M; 
midpoint = (imax*jmax + 1)/2;  
testpointlabel = s(1); 
  
for i = 1 : imax 
    for j = 1 : jmax 
        rpnew = 1; 
        for k = 1 : I 
            for n = 1 : M 
                r(n) = sqrt(( x(s(n))-x(i,j) )^2 + ( y(s(n))-y(i,j) )^2 
); 
                if r(n)<=rpnew 
                    w(n) = exp(-alpha*(r(n)/rpnew)^2)-exp(-alpha); 
                else 
                    w(n)=0; 
                end 
            end 
            Dp = (sum(w)/ww)/(pi*(rpnew)^2); 
            rpnew = sqrt(NN(k)/(pi* Dp)); 
        end 
        T(i,j) = w*(temp(s)')/sum(w); 
    end 
end 
  
%---------------------------------------------------------------------- 
%--------------Interpolated temperature for given coordination--------- 
Sensotemp = temp(s(1)) 
rpnew; 
%---------------------------------------------------------------------- 
%--------------Scatter plot of temperature for all gridded cells------- 
figure(1) 
scatter3(x(:,50),y(:,50),T(:,50)) 
title('Mid line'); 
figure(2) 
for j = 1 : jmax 
scatter3(x(:,j),y(:,j),T(:,j)) 
colorbar 
hold on 
scatter3(x(s),y(s),T(s),100,'filled') 
title('Interpolated temperature including Gauge locations') 
end 
scatter3(x(s),y(s),T(s)) 
hold off 
figure(3) 
contour3(T,1000);  
colorbar 
 

 



Image Processing (Retrieving Temperature from MODIS images): 
 
clc 
clear 
close all 
  
a=load('june2006latlonstations.txt'); 
[X, cmap, R1, bbox1] = geotiffread('tjune13v04.tif'); 
X=double(0.02.*X); 
 X(X==0) = NaN; 
% figure 
% geoshow(X, R1, 'DisplayType', 'texturemap'); 
% colormap(demcmap(X)) 
% colorbar; 
[Y, cmap, R2, bbox2] = geotiffread('tjune13v05.tif'); 
Y=double(0.02.*Y); 
 Y(Y==0) = NaN; 
figure 
geoshow(X, R1, 'DisplayType', 'texturemap'); 
colormap(demcmap(X)) 
colorbar; 
hold on 
geoshow(Y, R2, 'DisplayType', 'texturemap'); 
colormap(demcmap(Y)) 
colorbar; 
% caxis([300 320]) 
hold on 
scatter(a(:,2),a(:,1)) 
 for i=1 : size(a(:,1)) 
    if a(i,1) >= bbox1(1,2) 
a1v4(i,1)=a(i,1); 
    else 
        a1v5(i,1)=a(i,1); 
    end 
end 
indb1=find(a1v4); 
  b1=a(indb1,:)         
indb2=find(a1v5); 
b2=a(indb2,:) 
  
indexj = floor(abs((abs(b1(:,2))-abs(R1(3,1))))/R1(2,1)) + 1; 
% index latitude  -75:desired lat, R(2,1):dx, bbox(1,1):lat upper left  
indexi = floor(abs((abs(b1(:,1))-abs(R1(3,2))))/R1(2,1)); 
b=zeros(size(b1(:,1)),1); 
for i=1: size(indexi(:)) 
b(i,1) = X(indexi(i), indexj(i)); 
b(i,1) =((9/5).*b(i,1))-459.67; 
end 
belev1=b-0.0204; 
belev1withstationindex=zeros(size(belev1),2); 
belev1withstationindex(:,1) = belev1; 
belev1withstationindex(:,2) = indb1; 
belev1withstationindex 
  
index2j = floor(abs((abs(b2(:,2))-abs(R2(3,1))))/R2(2,1)) + 1; 
index2i = floor(abs((abs(b2(:,1))-abs(R2(3,2))))/R2(2,1)); 



b2a=zeros(size(b2(:,1)),1); 
for j=1: size(index2i(:)) 
b2a(j,1) = Y(index2i(j), index2j(j)); 
b2a(j,1) =((9/5).*b2a(j,1))-459.67; 
end 
  
b2elev = b2a-0.0204; 
belev2withstationindex = zeros(size(b2elev),2); 
belev2withstationindex(:,1) = b2elev; 
belev2withstationindex(:,2) = indb2; 
belev2withstationindex 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Leave one out cross validation: 

clc 
clear 
 close all 
format('shortG') 
% error matrix error(station index,Day) , (TG-TM) ,  
% error= (Tg-TM)station - (TG-TM)NNstation 
[TGplainfield] = xlsread('PLAINFIELD.xls',1,'F2990:F3355'); 
[TGatlanticcityIntlAp] = xlsread('ATLANTIC CITY INTL 
AP.xls',1,'F3022:F3386'); 
[TGharrison] = xlsread('HARRISON.xls',1,'F3022:F3386'); 
[TGtomsriver] = xlsread('TOMS RIVER.xls',1,'F2990:F3354'); 
[TGcharlottesburg] = xlsread('CHARLOTTEBURG RSVR.xls',1,'F2769:F3133'); 
[TGmillville] = xlsread('MILLVILLE MUNI AP.xls',1,'F3022:F3386'); 
[TGestellmanor] = xlsread('ESTELL MANOR.xls',1,'F2993:F3357'); 
[TGnewarlIntlAp] = xlsread('NEWARK INTL AP.xls',1,'F3022:F3386'); 
[TGcanoebrook] = xlsread('CANOE BROOK.xls',1,'F2865:F3229'); 
[TGhightstown] = xlsread('HIGHTSTOWN 2 W.xls',1,'F3022:F3386'); 
[TGtuckerton] = xlsread('TUCKERTON 2 NE.xls',1,'F444:F808'); 
[TGcranford] = xlsread('CRANFORD.xls',1,'F2991:F3355'); 
[TGmoorestown] = xlsread('MOORESTOWN.xls',1,'F2959:F3323'); 
[TGseabrook] = xlsread('SEABROOK FARMS.xls',1,'F3022:F3386'); 
[TGflemington] = xlsread('FLEMINGTON 5 NNW.xls',1,'F3022:F3386'); 
[TGfreehold] = xlsread('FREEHOLD-MARLBORO.xls',1,'F2613:F2977'); 
[TGhammonton] = xlsread('HAMMONTON 1 NE.xls',1,'F728:F1092'); 
[TGsussex2] = xlsread('SUSSEX 2 NW.xls',1,'F2867:F3231'); 
[TGnewbrunswick] = xlsread('NEW BRUNSWICK 3 SE.xls',1,'F2991:F3355'); 
[TGcapemay] = xlsread('CAPE MAY 2 NW.xls',1,'F2958:F3322'); 
[TGindianmills] = xlsread('INDIAN MILLS 2 W.xls',1,'F3022:F3386'); 
[TGwertsville] = xlsread('WERTSVILLE 4 NE.xls',1,'F2048:F2412'); 
[TGessex] = xlsread('ESSEX FELLS SVC BLDG.xls',1,'F2014:F2378'); 
TGplainfield(TGplainfield==99999)=NaN; 
TGatlanticcityIntlAp(TGatlanticcityIntlAp==99999)=NaN; 
TGharrison(TGharrison==99999)=NaN; 
TGtomsriver(TGtomsriver==99999)=NaN; 
TGcharlottesburg(TGcharlottesburg==99999)=NaN; 
TGmillville(TGmillville==99999)=NaN; 
TGestellmanor(TGestellmanor==99999)=NaN; 
TGnewarlIntlAp(TGnewarlIntlAp==99999)=NaN; 
TGcanoebrook(TGcanoebrook==99999)=NaN; 
TGhightstown(TGhightstown==99999)=NaN; 
TGtuckerton(TGtuckerton==99999)=NaN; 
TGcranford(TGcranford==99999)=NaN; 
TGmoorestown(TGmoorestown==99999)=NaN; 
TGseabrook(TGseabrook==99999)=NaN; 
TGflemington(TGflemington==99999)=NaN; 
TGfreehold(TGfreehold==99999)=NaN; 
TGhammonton(TGhammonton==99999)=NaN; 
TGsussex2(TGsussex2==99999)=NaN; 
TGnewbrunswick(TGnewbrunswick==99999)=NaN; 
TGcapemay(TGcapemay==99999)=NaN; 
TGindianmills(TGindianmills==99999)=NaN; 
TGwertsville(TGwertsville==99999)=NaN; 
TGessex(TGessex==99999)=NaN; 
  



TMplainfield=load('plainfield.txt'); 
TMatlanticcityIntlAp=load('atlanticcityIntlAp.txt'); 
TMharrison=load('harrison.txt'); 
TMtomsriver=load('tomsriver.txt'); 
TMcharlottesburg=load('charlottesburg.txt'); 
TMmillville=load('millville.txt'); 
TMestellmanor=load('estellmanor.txt'); 
TMnewarlIntlAp=load('newarkintlAp.txt'); 
TMcanoebrook=load('canoebrook.txt'); 
TMhightstown=load('hightstown.txt'); 
TMtuckerton=load('tuckerton.txt'); 
TMcranford=load('cranford.txt'); 
TMmoorestown=load('moorestown.txt'); 
TMseabrook=load('seabrook.txt'); 
TMflemington=load('flemington.txt'); 
TMfreehold=load('freehold.txt'); 
TMhammonton=load('hammonton.txt'); 
TMsussex2=load('sussex.txt'); 
TMnewbrunswick=load('newbrunswick.txt'); 
TMcapemay=load('capemay.txt'); 
TMindianmills=load('indianmills.txt'); 
TMwertsville=load('wertsville.txt'); 
TMessex=load('essexfells.txt'); 
  
TMplainfielda=load('plainfieldA.txt'); 
TMatlanticcityIntlApa=load('atlanticcityIntlApA.txt'); 
TMharrisona=load('harrisonA.txt'); 
TMtomsrivera=load('tomsriverA.txt'); 
TMcharlottesburga=load('charlottesburgA.txt'); 
TMmillvillea=load('millvilleA.txt'); 
TMestellmanora=load('estellmanorA.txt'); 
TMnewarlIntlApa=load('newarkintlApA.txt'); 
TMcanoebrooka=load('canoebrookA.txt'); 
TMhightstowna=load('hightstownA.txt'); 
TMtuckertona=load('tuckertonA.txt'); 
TMcranforda=load('cranfordA.txt'); 
TMmoorestowna=load('moorestownA.txt'); 
TMseabrooka=load('seabrookA.txt'); 
TMflemingtona=load('flemingtonA.txt'); 
TMfreeholda=load('freeholdA.txt'); 
TMhammontona=load('hammontonA.txt'); 
TMsussex2a=load('sussexA.txt'); 
TMnewbrunswicka=load('newbrunswickA.txt'); 
TMcapemaya=load('capemayA.txt'); 
TMindianmillsa=load('indianmillsA.txt'); 
TMwertsvillea=load('wertsvilleA.txt'); 
TMessexa=load('essexfellsA.txt'); 
  
a= load('xynames.txt'); 
z=1:183; 
location=zeros(size(a(:,1),1),3); 
for i=1:size(a(:,1),1) 
j=1; 
location(i,j,z)=a(i,1); 
location(i,2,z)=a(i,2); 
end 



locationa=zeros(size(a(:,1),1),3); 
for i=1:size(a(:,1),1) 
j=1; 
locationa(i,j,z)=a(i,1); 
locationa(i,2,z)=a(i,2); 
end 
z=1:183; 
location(1,3,z)=TGplainfield(90+z)-TMplainfield(z); 
location(2,3,z)=TGatlanticcityIntlAp(90+z)-TMatlanticcityIntlAp(z); 
location(3,3,z)=TGharrison(90+z)-TMharrison(z); 
location(4,3,z)=TGtomsriver(90+z)-TMtomsriver(z); 
location(5,3,z)=TGcharlottesburg(90+z)-TMcharlottesburg(z); 
location(6,3,z)=TGmillville(90+z)-TMmillville(z); 
location(7,3,z)=TGestellmanor(90+z)-TMestellmanor(z); 
location(8,3,z)=TGnewarlIntlAp(90+z)-TMnewarlIntlAp(z); 
location(9,3,z)=TGcanoebrook(90+z)-TMcanoebrook(z); 
location(10,3,z)=TGhightstown(90+z)-TMhightstown(z); 
location(11,3,z)=TGtuckerton(90+z)-TMtuckerton(z); 
location(12,3,z)=TGcranford(90+z)-TMcranford(z); 
location(13,3,z)=TGmoorestown(90+z)-TMmoorestown(z); 
location(14,3,z)=TGseabrook(90+z)-TMseabrook(z); 
location(15,3,z)=TGflemington(90+z)-TMflemington(z); 
location(16,3,z)=TGfreehold(90+z)-TMfreehold(z); 
location(17,3,z)=TGhammonton(90+z)-TMhammonton(z); 
location(18,3,z)=TGsussex2(90+z)-TMsussex2(z); 
location(19,3,z)=TGnewbrunswick(90+z)-TMnewbrunswick(z); 
location(20,3,z)=TGcapemay(90+z)-TMcapemay(z); 
location(21,3,z)=TGindianmills(90+z)-TMindianmills(z); 
location(22,3,z)=TGwertsville(90+z)-TMwertsville(z); 
location(23,3,z)=TGessex(90+z)-TMessex(z); 
z=1:183; 
locationa(1,3,z)=TGplainfield(90+z)-TMplainfielda(z); 
locationa(2,3,z)=TGatlanticcityIntlAp(90+z)-TMatlanticcityIntlApa(z); 
locationa(3,3,z)=TGharrison(90+z)-TMharrisona(z); 
locationa(4,3,z)=TGtomsriver(90+z)-TMtomsrivera(z); 
locationa(5,3,z)=TGcharlottesburg(90+z)-TMcharlottesburga(z); 
locationa(6,3,z)=TGmillville(90+z)-TMmillvillea(z); 
locationa(7,3,z)=TGestellmanor(90+z)-TMestellmanora(z); 
locationa(8,3,z)=TGnewarlIntlAp(90+z)-TMnewarlIntlApa(z); 
locationa(9,3,z)=TGcanoebrook(90+z)-TMcanoebrooka(z); 
locationa(10,3,z)=TGhightstown(90+z)-TMhightstowna(z); 
locationa(11,3,z)=TGtuckerton(90+z)-TMtuckertona(z); 
locationa(12,3,z)=TGcranford(90+z)-TMcranforda(z); 
locationa(13,3,z)=TGmoorestown(90+z)-TMmoorestowna(z); 
locationa(14,3,z)=TGseabrook(90+z)-TMseabrooka(z); 
locationa(15,3,z)=TGflemington(90+z)-TMflemingtona(z); 
locationa(16,3,z)=TGfreehold(90+z)-TMfreeholda(z); 
locationa(17,3,z)=TGhammonton(90+z)-TMhammontona(z); 
locationa(18,3,z)=TGsussex2(90+z)-TMsussex2a(z); 
locationa(19,3,z)=TGnewbrunswick(90+z)-TMnewbrunswicka(z); 
locationa(20,3,z)=TGcapemay(90+z)-TMcapemaya(z); 
locationa(21,3,z)=TGindianmills(90+z)-TMindianmillsa(z); 
locationa(22,3,z)=TGwertsville(90+z)-TMwertsvillea(z); 
locationa(23,3,z)=TGessex(90+z)-TMessexa(z); 
  
  



t=183; 
error=zeros(size(a(:,1),1),t); 
for t=1:183; 
    for i=1:size(a(:,1),1); 
        for j=1 : size(a(:,1),1); 
             
            r(j) = sqrt(( location(i,1,t)-location(j,1,t))^2 + ( 
location(i,2,t)-location(j,2,t))^2 ); 
        end 
        r=sort(r); 
         
        for m=1:size(a(:,1),1); 
            for n=1:size(a(:,1),1); 
                if sqrt(( location(i,1,t)-location(n,1,t))^2 + ( 
location(i,2,t)-location(n,2,t))^2 )==r(2); 
                    m; 
                    error(i,t)=location(i,3,t)-location(n,3,t);  
                end 
            end 
             
        end 
         
    end 
end 
for t=1:183; 
for i=1:size(a(:,1),1); 
    if error(i,t)==min(min(error(:,:))); 
        i,t 
    end 
end 
end 
errora=zeros(size(a(:,1),1),t); 
for t=1:183; 
    for i=1:size(a(:,1),1); 
        for j=1 : size(a(:,1),1); 
             
            r(j) = sqrt(( locationa(i,1,t)-locationa(j,1,t))^2 + ( 
locationa(i,2,t)-locationa(j,2,t))^2 ); 
        end 
        r=sort(r); 
         
        for m=1:size(a(:,1),1); 
            for n=1:size(a(:,1),1); 
                if sqrt(( locationa(i,1,t)-locationa(n,1,t))^2 + ( 
locationa(i,2,t)-locationa(n,2,t))^2 )==r(2); 
                    m; 
                    errora(i,t)=locationa(i,3,t)-locationa(n,3,t); 
                end 
            end 
        end 
    end 
end 
for t=1:183; 
for i=1:size(a(:,1),1); 
    if error(i,t)==min(min(error(:,:))); 
        i,t 



    end 
end 
end 
figure(2) 
  
for t=1:183; 
 scatter(location(:,3,t),location(:,3,t)-error(:,t),'.')    
hold on 
xlabel('TG(i) - TM(i)') 
ylabel('TG(k) - TM(k)') 
title('All Days(terra,tmax)') 
end 
xlim([-70 30]) 
ylim([-70 30]) 
figure(3) 
  
for t=1:183; 
 scatter(locationa(:,3,t),locationa(:,3,t)-errora(:,t),'.')    
hold on 
xlabel('TG(i) - TM(i)') 
ylabel('TG(k) - TM(k)') 
title('All Days(aqua,tmax)') 
end 
xlim([-70 30]) 
ylim([-70 30]) 
 q=zeros(183,1); 
figure(3) 
for i=1:23; 
for t=1:183; 
q(t,1)= -(error(i,t)-location(i,3,t)); 
end 
plot([91:273],q) 
hold on 
end 
for i=1:23; 
    for t=1:183; 
        if error(i,t)==min(min(error)); 
            i,t 
        end 
    end 
end 
% ------------------------For LOOCV------------------------------------
----     
% MSE= (sd/sqrt(N))^2 
N=zeros(t,1); 
MSE=zeros(t,1); 
for t=1:t; 
N(t) = size(error(:,t),1)-sum(isnan(error(:,t)),1);  
MSE(t) = ((nanstd(error(:,t)))/sqrt(size(error(:,t),1)-
sum(isnan(error(:,t)),1)))^2; 
end 
  
Na=zeros(t,1); 
MSEa=zeros(t,1); 
for t=1:t; 
Na(t) = size(errora(:,t),1)-sum(isnan(errora(:,t)),1);  



MSEa(t) = ((nanstd(errora(:,t)))/sqrt(size(errora(:,t),1)-
sum(isnan(errora(:,t)),1)))^2; 
end 
 

MODIS enhanced NN interpolation algorithm: 

clc 
clear 
 close all 
% ---Day number for getting cooresponded TG 
day=92; 
a=load('june2006latlonstations.txt'); 
[X, cmap, R1, bbox1] = geotiffread('tjune18v04.tif'); 
X=double(0.02.*X); 
 X(X==0) = NaN; 
[Y, cmap, R2, bbox2] = geotiffread('tjune18v05.tif'); 
Y=double(0.02.*Y); 
 Y(Y==0) = NaN; 
 for i=1 : size(a(:,1)) 
    if a(i,1) >= bbox1(1,2) 
a1v4(i,1)=a(i,1); 
    else 
        a1v5(i,1)=a(i,1); 
    end 
end 
indb1=find(a1v4); 
  b1=a(indb1,:)         
indb2=find(a1v5); 
b2=a(indb2,:) 
S = shaperead('nj_counties.shp') 
  
p=1;   
  
mstruct = defaultm('tranmerc'); 
mstruct.geoid = almanac('earth','grs80','survey foot'); 
mstruct.origin=[38.8333 -74.5 0]; 
mstruct.falsenorthing = 0.0; 
mstruct.falseeasting = 492125.0; 
mstruct.scalefactor = 0.9999; 
[lat lon] = minvtran(mstruct, [S.X]', [S.Y]'); 
  
eEWX=zeros(77,93); 
for i=1:76 
    for j=1:93 
        eEWX(i,j) = (X(i+493,j+1014)-X(i+493,j+1014+1)); 
    end 
end 
eEWY=zeros(80,124); 
for i=1:80 
    for j=1:123 
eEWY(i,j) = (Y(i,j+205)-Y(i,j+205+1)); 
    end 
end 
  



%------N -S----- 
eNSX = zeros(77,93); 
for j=1:93 
    for i=1:76 
        eNSX(i,j) = (X(i+492,j+1014)-X(i+492+1,j+1014)); 
    end 
end 
eNSY = zeros(80,124); 
for j=1:123 
    for i=1:80 
        eNSY(i,j)=(Y(i,j+205)-Y(i+1,j+205)); 
    end 
end 
  
EWx=zeros(77*93,1); 
for z=1:77*93-1; 
    for i=1:77 
        for j=1:93 
            EWx(z)=eEWX(i,j); 
            z=z+1; 
        end 
    end 
end 
 dfittool(EWx) 
  
EWy=zeros(80*124,1); 
for z=1:80*124-1; 
    for i=1:80 
        for j=1:124 
            EWy(z)=eEWY(i,j); 
            z=z+1; 
        end 
    end 
end 
 dfittool(EWy) 
EW=zeros(34158,1); 
EW(1:14320,1)=EWx; 
EW(14321:34158,1)=EWy; 
  
 dfittool(EW) 
  
NSx=zeros(77*93,1); 
for z=1:77*93-1; 
    for i=1:77 
        for j=1:93 
            NSx(z)=eNSX(i,j); 
            z=z+1; 
        end 
    end 
end 
  
NSy=zeros(80*124,1); 
for z=1:80*124-1; 
    for i=1:80 
        for j=1:124 
            NSy(z)=eNSY(i,j); 



            z=z+1; 
        end 
    end 
end 
  
NS=zeros(34158,1); 
NS(1:14320,1)=NSx; 
NS(14321:34158,1)=NSy; 
nsstd=nanstd(NS) 
ewstd=nanstd(EW) 
 for i=1:size(X,1) 
    for j=1: size(X,2)-1 
        if(abs(X(i,j)-X(i,j+1))>3.29*ewstd); 
            X(i,j)=NaN; 
        end 
    end 
end 
for i=1:size(Y,1) 
    for j=1:size(Y,2)-1 
        if(abs(Y(i,j)-Y(i,j+1))>3.29*nsstd); 
            Y(i,j)=NaN; 
        end 
    end 
end 
 for j=1: size(X,2) 
    for i=1:size(X,1)-1 
        if(abs(X(i,j)-X(i+1,j))>3.29*ewstd); 
            X(i,j)=NaN; 
        end 
    end 
end 
for j=1:size(Y,2)-1 
    for i=1:size(Y,1)-1 
        if(abs(Y(i,j)-Y(i+1,j))>3.29*nsstd); 
            Y(i,j)=NaN; 
        end 
    end 
end 
  
[TGplainfield] = xlsread('PLAINFIELD.xls',1,'F2990:F3355'); 
[TGatlanticcityIntlAp] = xlsread('ATLANTIC CITY INTL 
AP.xls',1,'F3022:F3386'); 
[TGharrison] = xlsread('HARRISON.xls',1,'F3022:F3386'); 
[TGtomsriver] = xlsread('TOMS RIVER.xls',1,'F2990:F3354'); 
[TGcharlottesburg] = xlsread('CHARLOTTEBURG RSVR.xls',1,'F2769:F3133'); 
[TGmillville] = xlsread('MILLVILLE MUNI AP.xls',1,'F3022:F3386'); 
[TGestellmanor] = xlsread('ESTELL MANOR.xls',1,'F2993:F3357'); 
[TGnewarlIntlAp] = xlsread('NEWARK INTL AP.xls',1,'F3022:F3386'); 
[TGcanoebrook] = xlsread('CANOE BROOK.xls',1,'F2865:F3229'); 
[TGhightstown] = xlsread('HIGHTSTOWN 2 W.xls',1,'F3022:F3386'); 
[TGtuckerton] = xlsread('TUCKERTON 2 NE.xls',1,'F444:F808'); 
[TGcranford] = xlsread('CRANFORD.xls',1,'F2991:F3355'); 
[TGmoorestown] = xlsread('MOORESTOWN.xls',1,'F2959:F3323'); 
[TGseabrook] = xlsread('SEABROOK FARMS.xls',1,'F3022:F3386'); 
[TGflemington] = xlsread('FLEMINGTON 5 NNW.xls',1,'F3022:F3386'); 
[TGfreehold] = xlsread('FREEHOLD-MARLBORO.xls',1,'F2613:F2977'); 



[TGhammonton] = xlsread('HAMMONTON 1 NE.xls',1,'F728:F1092'); 
[TGsussex2] = xlsread('SUSSEX 2 NW.xls',1,'F2867:F3231'); 
[TGnewbrunswick] = xlsread('NEW BRUNSWICK 3 SE.xls',1,'F2991:F3355'); 
[TGcapemay] = xlsread('CAPE MAY 2 NW.xls',1,'F2958:F3322'); 
[TGindianmills] = xlsread('INDIAN MILLS 2 W.xls',1,'F3022:F3386'); 
[TGwertsville] = xlsread('WERTSVILLE 4 NE.xls',1,'F2048:F2412'); 
[TGessex] = xlsread('ESSEX FELLS SVC BLDG.xls',1,'F2014:F2378'); 
  
indexj = floor(abs((abs(b1(:,2))-abs(R1(3,1))))/R1(2,1))+1; 
% index latitude  -75:desired lat, R(2,1):dx, bbox(1,1):lat upper left  
indexi = floor(abs((abs(b1(:,1))-abs(R1(3,2))))/R1(2,1)); 
b=zeros(size(b1(:,1)),1); 
for i=1: size(indexi(:)) 
b(i,1) = X(indexi(i), indexj(i)); 
b(i,1) =((9/5).*b(i,1))-459.67; 
end 
belev1=b-0.0204; 
belev1withstationindex=zeros(size(belev1),3); 
belev1withstationindex(:,1) = belev1; 
belev1withstationindex(:,2) = indb1; 
  
belev1withstationindex(1,3)=TGcanoebrook(day); 
belev1withstationindex(2,3)=TGcharlottesburg(day); 
belev1withstationindex(3,3)=TGcranford(day); 
belev1withstationindex(4,3)=TGessex(day); 
belev1withstationindex(5,3)=TGflemington(day); 
belev1withstationindex(6,3)=TGfreehold(day); 
belev1withstationindex(7,3)=TGharrison(day); 
belev1withstationindex(8,3)=TGhightstown(day); 
belev1withstationindex(9,3)=NaN; 
belev1withstationindex(10,3)=TGnewbrunswick(day); 
belev1withstationindex(11,3)=TGnewarlIntlAp(day); 
belev1withstationindex(12,3)=TGplainfield(day); 
belev1withstationindex(13,3)=TGsussex2(day); 
belev1withstationindex(14,3)=TGwertsville(day); 
belev1withstationindex 
index2j = floor(abs((abs(b2(:,2))-abs(R2(3,1))))/R2(2,1))+1 ; 
index2i = floor(abs((abs(b2(:,1))-abs(R2(3,2))))/R2(2,1)); 
b2a=zeros(size(b2(:,1)),1); 
for j=1: size(index2i(:)) 
b2a(j,1) = Y(index2i(j), index2j(j)); 
b2a(j,1) =((9/5).*b2a(j,1))-459.67; 
end 
  
b2elev = b2a-0.0204; 
belev2withstationindex = zeros(size(b2elev),2); 
belev2withstationindex(:,1) = b2elev; 
belev2withstationindex(:,2) = indb2; 
belev2withstationindex(1,3)=TGatlanticcityIntlAp(day); 
belev2withstationindex(2,3)=NaN; 
belev2withstationindex(3,3)=NaN; 
belev2withstationindex(4,3)=NaN; 
belev2withstationindex(5,3)=TGcapemay(day); 
belev2withstationindex(6,3)=TGestellmanor(day); 
belev2withstationindex(7,3)=TGhammonton(day); 
belev2withstationindex(8,3)=TGindianmills(day); 



belev2withstationindex(9,3)=TGmillville(day); 
belev2withstationindex(10,3)=TGmoorestown(day); 
belev2withstationindex(11,3)=TGseabrook(day); 
belev2withstationindex(12,3)=TGtomsriver(day); 
belev2withstationindex(13,3)=TGtuckerton(day); 
  
rx=zeros(size(indexi,1),1); 
ry=zeros(size(index2i,1),1); 
  
Tintx=zeros(size(X,1),size(X,2));  
for i=400:size(X,1); 
    for j=800 : size(X,2); 
         
        for z=1:size(indexi,1) 
            for z1=1:size(index2i,1) 
                rx(z) = sqrt((i-indexi(z))^2+(j-indexj(z))^2); 
                ry(z1) = sqrt((569-i+index2i(z1))^2+(j-855-
index2j(z1))^2); 
            end 
        end 
        u=sort(rx); 
        u1=sort(ry); 
         
        for zz=1:size(belev1withstationindex,1) ; 
            if(sqrt((i-indexi(zz))^2+(j-indexj(zz))^2)==u(1)); 
                p1=zz; 
            end 
        end 
        for zz3=1:size(belev1withstationindex,1) ; 
            if(sqrt((i-indexi(zz3))^2+(j-indexj(zz3))^2)==u(2)); 
                p7=zz3; 
            end 
        end 
        for zzz=1:size(belev2withstationindex,1) ; 
            if(sqrt((569-i+index2i(zzz))^2+(j-855-
index2j(zzz))^2)==u1(1)); 
                p2=zzz; 
            end 
        end 
         
        if(u(1)<u1(1)) 
             
            if(isnan(belev1withstationindex(p1,3))==1); 
                 
                Tintx(i,j)=belev1withstationindex(p7,3)-
belev1withstationindex(p7,1)+(9/5)*X(i,j)-459.67-.0204; 
            elseif(isnan(belev1withstationindex(p1,1))==1) 
                Tintx(i,j)=belev1withstationindex(p7,3)-
belev1withstationindex(p7,1)+(9/5)*X(i,j)-459.67-.0204; 
            else 
                Tintx(i,j)=belev1withstationindex(p1,3)-
belev1withstationindex(p1,1)+(9/5)*X(i,j)-459.67-.0204; 
            end 
        else 



            Tintx(i,j)=belev2withstationindex(p2,3)-
belev2withstationindex(p2,1)+(9/5)*X(i,j)-459.67; 
        end 
    end 
end 
         
              
Tinty=zeros(size(Y,1),size(Y,2)); 
rxx=zeros(size(indexi,1),1); 
ryy=zeros(size(index2i,1),1); 
for i=1:200; 
    for j=1 : 500; 
        for z=1:size(index2i,1) 
            for z1=1:size(indexi,1) 
                ryy(z) = sqrt((i-index2i(z))^2+(j-index2j(z))^2); 
                rxx(z1) = sqrt((i+indexi(z1))^2+(j+855-indexj(z1))^2); 
            end 
        end 
        uy=sort(ryy); 
        uy1=sort(rxx); 
         
        for zz1=1:size(belev2withstationindex,1) ; 
            if(sqrt((i-index2i(zz1))^2+(j-index2j(zz1))^2)==uy(1)); 
                p3=zz1; 
            end 
        end 
        for zz3=1:size(belev2withstationindex,1) ; 
            if(sqrt((i-index2i(zz3))^2+(j-index2j(zz3))^2)==uy(2)); 
                p8=zz3; 
            end 
             
        end 
        %             ----for uy1>uy 
        for zz2=1:size(belev1withstationindex,1) ; 
            if(sqrt((i+indexi(zz2))^2+(j+855-indexj(zz2))^2)==uy1(1)); 
                p4=zz2; 
                 
            end 
             
        end 
        if(uy(1)<uy1(1)) 
            if(isnan(belev2withstationindex(p3,3))==1) 
                Tinty(i,j)=belev2withstationindex(p8,3)-
belev2withstationindex(p8,1)+(9/5)*Y(i,j)-459.67-.0204; 
            elseif(isnan(belev2withstationindex(p3,1))==1) 
                Tinty(i,j)=belev2withstationindex(p8,3)-
belev2withstationindex(p8,1)+(9/5)*Y(i,j)-459.67-.0204; 
            else 
                Tinty(i,j)=belev2withstationindex(p3,3)-
belev2withstationindex(p3,1)+(9/5)*Y(i,j)-459.67-.0204; 
            end 
        else 
            Tinty(i,j)=belev1withstationindex(p4,3)-
belev1withstationindex(p4,1)+(9/5)*Y(i,j)-459.67; 
        end 
    end 



end 
figure 
geoshow(Tintx, R1, 'DisplayType', 'texturemap');  
hold on 
geoshow(Tinty, R2, 'DisplayType', 'texturemap');  
colorbar 
hold on 
plot(lon,lat) 
hold on 
scatter(a(:,2),a(:,1),'k*') 
title(' 04/02/2006 - MODIS enhanced NN interpolated gauge data 
(Geographic coordinate system:NAD83)') 
xlabel('Longitude') 
ylabel('Latitude') 
caxis([60 90]) 
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