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This study develops two fault detection strategies for in-situ sensors that are based on 
data-driven regression models of the sensor data. Sensor faults are determined by 
identifying anomalous measurements in the data stream, where anomalous measurements 
are operationally defined as measurements that fall outside of the bounds of an 
established prediction interval. Eight instantiations of each detection strategy are created, 
using different data-driven methods and either a 95% or a 99% prediction interval. The 
performance of these detectors for identifying data transmission faults is compared using 
windspeed data originating from Corpus Christi Bay, Texas. The basis for comparison is 
the number of false positives/negatives identified by each of the detectors. The results 
indicate that the strategies perform well for identifying data transmission faults.   
 
INTRODUCTION 
 
In-situ sensors are sensors that are physically located in the environment they are 
monitoring. These sensors collect time series data that flow from the sensor to the data 
repository continuously, creating a data stream. The sensors operate under harsh 
conditions, and the data they collect must be transmitted across wireless networks; thus, 
the data can easily become corrupted through data transmission or sensor faults.  
Undetected erroneous data can significantly affect the value of the collected data for 
applications such as environmental monitoring or real-time forecasting. For this reason, a 
method for detecting erroneous data before it is archived is necessary to ensure its 
quality. Due to the vast quantity of data being collected, this method must be automated 
in order for it to be practical. Many methods developed for this purpose seek to identify 
anomalous measurements (i.e. measurements that do not fit the historical pattern of the 
data) based on the residual between a model of the data stream and the actual values (e.g. 
[1, 2, 3]), while others identify faulty sensors directly, using other measurements of the 
system state (e.g. [4, 5, 6]). It is interesting to note that many of these methods operate in 
controlled environments, such as manufacturing/power plants or machinery, where the 
process variables are likely to be within a predefined range. In this research, however, the 
sensors are located in the natural environment where the range of the process variables is 

 



not known a priori. Furthermore, to the authors’ knowledge, the studies employing the 
aforementioned methods did not consider errors caused by data transmission faults. 
 
 This study develops two automated strategies for detecting anomalous data and 
compares the performance of eight instantiations of each strategy in detecting erroneous 
data caused by data transmission faults using a case study from an environmental sensor 
network deployed in Corpus Christi Bay, Texas by the Shoreline Environmental Research 
Facility (SERF). The following section describes the two fault detection strategies and 
their instantiations. Application of the 16 instantiations to one of the Corpus Christi Bay 
sensors is presented, and the results of this case study are discussed. Finally, conclusions 
and suggestions for future work are given. 
 
ANOMALY DETECTION STRATEGIES 
 
Two strategies for detecting anomalous data are considered in this study: anomaly 
detection (AD) and anomaly detection and mitigation (ADAM). Both strategies consider 
the data stream sequentially and use a model to predict the next measurement and the 
bounds of the n% prediction interval (PI). The prediction interval gives the range of 
plausible values that the next measurement can take, and the prediction level (n) indicates 
the expected frequency with which measurements will actually fall in this range. If the 
new measurement falls within the bounds of the PI, then the measurement is classified as 
non-anomalous; otherwise, it is classified as anomalous. The AD strategy simply uses the 
previous measurements for future predictions, whether or not they were classified as 
anomalous, while the ADAM strategy replaces anomalous measurements with model 
predictions before making future predictions. In this study, four data-driven methods 
were used to create prediction models: naïve, clustering, perceptron, and artificial neural 
network (ANN). Data-driven methods like these develop models using sets of training 
examples. Each example contains a feature set (i.e. the set of variables used to make the 
prediction) and a target output. Training these models involves fitting their parameters to 
minimize error on the training examples, without overfitting that can lead to poor 
predictions. Since the PI requires the quantification of the standard deviation of the model 
error, 10-fold cross-validation [7, 8] was used to train the models. The remainder of this 
section summarizes these four modeling methods. 
 
The naïve predictor is a nearest-neighbor approach [8, 9] that bases its prediction of an 
unseen event on the response of the system to the most similar historical event and 
defines similarity in terms of temporal distance. Thus, the naïve prediction of a 
measurement at time t+∆t is equal to the value of the measurement at time t. The 
clustering predictor [10] also predicts the value of an unseen event based on the observed 
responses of similar events; however, it defines similarity by mapping each measurement 
to a region of feature space. It then partitions the feature space into local regions 
(clusters) based on the training data and predicts the system response from each cluster to 



be the mean of the training data target values that mapped to each cluster. The k-means 
clustering algorithm [7, 8, 9] is used because it scales well to large quantities of data [11]. 
The number of clusters is specified using within cluster scatter [9], which indicates the 
similarity of the points to their assigned cluster center. The perceptron [12, 13] predicts 
the response of a system to be a linear combination of the input features describing the 
system state. Artificial neural networks [8, 9, 12, 15] are networks of perceptron-like 
nodes that are capable of creating models of a system state that are non-linear 
combinations of the input features. The ANN considered in this study is a feed-forward 
network that is trained using the standard backpropagation algorithm with gradient 
descent [14]. 
  
CASE STUDY 
 
To demonstrate and compare the efficacy of the fault detection strategies developed in 
this study, they were applied to a windspeed sensor data stream from Corpus Christi Bay. 
The AD and ADAM strategies were tested using all four modeling methods and 95% and 
99% prediction intervals. These 16 combinations will hereafter be referred to as fault 
detectors. The features used to model the data stream were selected using correlation 
analysis, a common approach in time-series modeling [16]. This analysis indicated that 
the windspeed is strongly correlated with historical measurements as distant as 5.5 hours. 
However, because the measurement frequency is one second, it was necessary to reduce 
the number of descriptive features to the most recent 30 seconds of data. The windspeed 
models were developed using 30,000 training examples selected at random from the 
period of January–May 2004.  The 16 resulting fault detectors were then compared, based 
on their ability to identify erroneous data caused by data transmission faults. 
 
RESULTS  
 
Since the data used in this study were subjected to manual quality control measures 
before they were archived, it was expected that the detectors would not identify many 
data anomalies in the archive. However, this was not the case. The detectors identified 
approximately 6% of the data during the month of June as anomalous. This result 
encouraged focused inspection of these data. For example, Figure 1 shows a two minute 
segment of the data stream in which six suspicious events can be easily identified. All six 
of these events had been classified as anomalous by one or more of the 16 detectors. 
Subsequent investigation of data, such as these six anomalous points, by the SERF data 
managers revealed that events such as these were most likely caused by wireless 
transmission errors. Further analysis of anomalous data revealed other suspicious events 
that were of significantly longer duration than those shown in Figure 1. For example, 
Figure 2 shows a 35 minute segment of the data stream during which a suspicious long 
duration event occurs. The windspeed between minutes 8 and 26 in the plot appear to 
have been offset by a constant 7 m/s. It is the sharpness of the transition from the slower 



Figure 1. Data exhibiting errors resulting from short duration faults. 

(~5 m/s) to the faster (~12 m/s) windspeed and back, as well as the existence of data in 
both the slow and fast regimes that appear to correlate with data in the opposite regime, 
which suggests that a significant portion of the data presented in this figure do not 
represent the actual windspeed. This data segment is of particular interest, because its 
behavior is similar to the behavior of an offset bias sensor fault [17]. Errors resulting 
from short duration faults, such as those shown in Figure 1, may not have a significant 
effect on the utility of the data if time averages are used (e.g. 2-minute averages). 
However, the high frequency with which these events are observed in this data stream 
may adversely affect time averages. Long duration errors, such as those shown in Figure 
2, are more worrisome because their effect can only be mitigated if longer time averages 
are used. 
 
The existence of errors in June 2004 data indicated that the data from January-May (used 
for training) also contained errors. Thus, before proceeding with a assessment of the 16 
detectors, it was necessary to clean the training data and retrain the predictors. Cleaning 
was performed using the Naïve-AD detector with a 95% PI. Records containing 
anomalous data were removed from the training set. The naïve detector was chosen 
because it performs well in identifying anomalous data and because it does not rely on a 
model of the data stream that could have been affected by errors in the training data. The 
AD strategy was used because, unlike the ADAM strategy, previous misclassifications do 
not affect its future performance. 
 
Once the training data were cleaned, the performance of the 16 fault detectors for 
identifying additional data transmission faults was quantified using a sample of over 1200 
other data points from the data archive. True/false positives were identified visually using 
domain knowledge provided by the SERF data managers. Figure 3 shows the detectors’ 
false positive rate for identifying erroneous data attributed to transmission faults. It can 
be seen that the ADAM strategy reduces the false positive rates of the perceptron and 
ANN-based detectors, whereas it increases the false positive rates of the naïve and 
clustering-based detectors. The use of mitigation decreases the number of false positives 



Figure 2. Data exhibiting errors resulting from long duration faults. 

reported by the perceptron and ANN-based detectors because, without its use, 
transmission fault induced errors adversely affect future classifications by skewing input 
values to future prediction intervals. The naïve and clustering-based detectors, however, 
appear to be less sensitive to transmission fault induced errors in their input data. Perhaps 
this is due to the difference in how the perceptron and ANN-based detectors and naïve 
and clustering-based detectors predict the future windspeed: Unlike the perceptron and 
ANN detectors, the naïve and clustering-based methods do not predict the future 
windspeed using a function of the input values. Rather, these detectors predict the future 
windspeed using a similar previously observed example. Thus, measurements that vary 
significantly from the current locally averaged windspeed (e.g. errors due to transmission 
faults) in the input values to these detectors will not cause a future windspeed prediction 
that is vastly different from previously observed windspeeds.  
 
However, the use of the ADAM strategy can negatively impact the performance of a 
detector when it misclassifies a non-anomalous point, because this causes the detector to 
replace the valid measurement with an incorrect value, which sometimes results in the 
detector continuing to make mistakes and replace valid measurements with incorrect 
values until the cycle is broken. In the case of the perceptron and ANN-based detectors, 
this behavior is uncommon and outweighed by the positive benefits of mitigation 
described previously, whereas in the case of the naïve and clustering-based detectors, this 
behavior significantly affects the detectors’ performance. Since the naïve-based detectors 
use only one data point to predict the future windspeed, it is understandable that, when 
using the ADAM strategy, this method will perpetuate misclassifications because future 
predictions will reflect the incorrect values that replaced valid measurements. However, it 
is less clear why the clustering-based detectors behave in this manner. Figure 3 also 
indicates that an increase in the prediction level from 95% to 99% decreases the number 
of false positives, though this decrease is not as dramatic as the decrease/increase 
associated with the use of mitigation, indicating that the appropriate use of mitigation has 
the most significant effect on the detectors’ false positive rate. 
 



Figure 3. False positive rates for detecting transmission faults using a 95% and 99% PI. 

The false negative rate for the detectors is shown in Figure 4. It can be seen that the 
naïve, perceptron, and ANN-based detectors misclassify fewer erroneous data than the 
cluster-based detectors, which misclassify almost all of the erroneous data. Thus, the 
clustering-based detectors are not useful for detecting transmission fault induced data 
anomalies. It can also be seen that the use of the ADAM strategy significantly improves 
the ability of the perceptron-based detectors to correctly classify erroneous data, whereas 
it does not significantly affect the false negative rates of the other detectors. The decrease 
in the perceptron-based detectors’ false negative rate, due to the use of the ADAM 
strategy, can again be attributed to transmission fault induced errors adversely affecting 
future classifications by skewing input values to future prediction intervals. Furthermore, 
an increase in the prediction level from 95% to 99% results in an increase in the false 
negative rate, which, for the best performing detectors, is larger than the corresponding 
decrease in the false positive rate. 
 
CONCLUSIONS 
 
This case study demonstrates the value and efficacy of the proposed fault detection 
strategies. Fault detectors using both the AD and ADAM strategies identified a 
significant number of previously unidentified errors in windspeed data from Corpus 
Christi Bay. The errors had durations ranging from 1 second to several minutes and 
affected approximately 6% of the data. After cleaning the errors in the training data, an 
assessment of 8 instantiations of both the AD and ADAM strategies indicated that the 
performance of the perceptron and ANN based detectors in detecting errors in the testing 
data was significantly improved by the use of the ADAM strategy, and that the naïve-AD, 
perceptron-ADAM, and ANN-ADAM detectors performed well. Furthermore, for these 
strategies, there is a larger increase in the false negative rate than decrease in the false 
positive rate when the prediction level is increased from 95% to 99%, indicating that a 



Figure 4. False negative rates for detecting transmission faults using a 95% and 99% PI. 

prediction level of 95% provides a reasonable tradeoff between misclassifying non-
anomalous and anomalous points. 
 
The results presented here focus on the ability of the proposed fault detection strategies to 
identify errors in the data resulting from transmission faults. Due to the harsh 
environment in which in-situ sensors must operate, sensor faults are also expected. At the 
conference, we plan to present additional results quantifying the performance of these 
fault detection strategies for identifying additional sensor faults. 
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