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Abstract 

Understanding and predicting the behavior of large-scale environmental systems is 

necessary for addressing many challenging problems of environmental interest.  

Unfortunately, the challenge of scaling predictive models, as well as the difficulty of 

parameterizing these models, makes it difficult to apply them to large-scale systems.  

This research addresses these issues through the use of data mining.  Specifically, this 

dissertation addresses two problems: upscaling models of solute transport in porous 

media and detecting anomalies in streaming environmental data. 

 

Upscaling refers to the creation of models that do not need to explicitly resolve all scales 

of system heterogeneity.  Upscaled models require significantly fewer computational 

resources than do models that resolve small-scale heterogeneity.  This research develops 

an upscaling method based on genetic programming (GP), which facilitates both the GP 

search and the implementation of the resulting models, and demonstrates its use and 

efficacy through a case study. 

 

Anomaly detection is the task of identifying data that deviate from historical patterns.  It 

has many practical applications, such as data quality assurance and control (QA/QC), 

focused data collection, and event detection.  The second portion of this dissertation 

develops a suite of data-driven anomaly detection methods, based on autoregressive data-

driven models (e.g. artificial neural networks) and dynamic Bayesian network (DBN) 

models of the sensor data stream.  All of the developed methods perform fast, 

incremental evaluation of data as it becomes available; scale to large quantities of data; 
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and require no a priori information, regarding process variables or types of anomalies 

that may be encountered.  Furthermore, the methods can be easily deployed on large 

heterogeneous sensor networks.  The anomaly detection methods are then applied to a 

sensor network located in Corpus Christi Bay, Texas, and their abilities to identify both 

real and synthetic anomalies in meteorological data are compared.  Results of these case 

studies indicate that DBN-based detectors, using either robust Kalman filtering or Rao-

Blackwellized particle filtering, are most suitable for the Corpus Christi meteorological 

data. 
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Chapter 1:  Introduction 

Understanding and predicting the behavior of large-scale environmental systems is 

necessary for addressing many challenging problems of environmental interest, such as 

(1) the design of groundwater remediation strategies, (2) the development of early 

warning systems for natural disasters, like hurricanes or tsunamis, and (3) the 

understanding of conditions that cause natural events of concern, like hypoxia in the Gulf 

of Mexico.   

 

One popular method of predicting the behavior of environmental systems is through the 

use of mathematical models of the system.  Unfortunately, there are several obstacles to 

applying such models to large-scale systems.  One such obstacle is that mathematical 

models often do not scale well to large systems.  Models of environmental systems are 

composed of hierarchical sets of coupled processes for which sub-models exist.  These 

sub-models are often in the form of ordinary or partial differential equations (ODEs or 

PDEs).  Because of the complexity of these equations, and particularly because of the 

complexity caused by their boundary/initial conditions, they cannot be solved directly; 

instead, numerical methods must be employed.  Such numerical solutions require 

discretization of the space-time domain and are expressed as a number of simultaneous 

equations proportional to the number of units in the spatial discretization.  These 

equations must be solved as many times as there are points in the temporal discretization.  

The resolution of the discretization is not arbitrary, but linked to the stability bounds of 

the numerical approximation of the differential equation, as well as the scale of the 

heterogeneity of salient properties of the spatial domain.  The result is that the equations 
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governing the behavior of a large environmental system may require an immense number 

of simultaneous equations to be solved repeatedly, which may render the model incapable 

of addressing large-scale systems, especially when a large number of predictions must be 

made (as in the case of a remediation design problem) or when the predictions must be 

made quickly (as in the case of an early warning system for natural disasters). 

 

The most straightforward approach for addressing the computational demands of solving 

models of large-scale systems is to use parallel computing to distribute the computational 

burden over many processors, thus decreasing the time required for solutions to be 

reached (Gwo et al. 2001, Steefel 2001).  Another approach involves developing models 

that do not need to resolve all the heterogeneity of the spatial domain.  The development 

of such “upscaled” models continues to be a central concern of researchers and is the 

focus of the first research component of this dissertation. 

 

A second obstacle to using mathematical models of large-scale environmental systems is 

that the values of the model parameters are often not readily available.  These parameters 

include spatial properties, boundary and initial conditions, and process-related 

coefficients.  Characterizing these parameters often requires detailed measurements at 

high spatial and/or temporal resolution, the collection of which can be prohibitively 

expensive and sometimes impossible, without altering the system itself.  Some techniques, 

such as geostatistics (Goovaerts 1997) and stochastic modeling (Rubin 2003), have been 

developed to improve the accuracy and confidence of model predictions, but these 

methods would still benefit from higher resolution data. 
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Recent advances in sensor technology are facilitating the deployment of sensors into the 

environment that can produce measurements at high spatial and/or temporal resolutions 

(NRC 2006).  Not only can the data be used to better characterize the system for 

improved modeling, but they can also be used to produce better understanding of the 

mechanisms of environmental processes.  Furthermore, these data can be used to improve 

model predictions, through the use of data assimilation and real-time forecasting.   

 

Both data assimilation and real-time forecasting use measured field data to improve the 

prediction accuracy of a model of an environmental system.  Data assimilation is a 

method of combining field-measured data with models of system dynamics, such that 

model predictions are always made within the predictability limit of the system.  

Furthermore, data assimilation provides a framework for estimating the prediction error 

of the model, which can be used to refine the prediction.  Data assimilation has long been 

used in weather forecasting and oceanographic modeling (Ghil & Malanotte-Rizzoli 

1991) and has recently been applied to coastal area modeling.  In particular, Madsen and 

Cañizares (1999) and Bertino et al. (2002) presented applications of Kalman-filter-based 

assimilation schemes to 2- and 3-dimensional hydrodynamic modeling in an estuarine 

system, respectively. 

 

Real-time forecasting uses the most recent measurements of a system state as the initial 

and boundary conditions of a predictive model.  Several case studies (e.g Elliott & Jones 

2000, Guinasso et al. 2001) have demonstrated that predictions made with real-time 
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forecasting are more accurate than predictions made with more traditional estimates of 

initial and boundary conditions. 

 

Unfortunately, the benefits of having increased high-resolution data to characterize large-

scale environmental systems come at the cost of needing to manage, archive, clean, 

aggregate, and derive meaning from the large quantities of data collected by these sensors, 

so methods must be developed to meet this task.  The second research component of this 

dissertation focuses on automated real-time methods for identifying anomalous 

measurements (i.e. measurements that deviate markedly from the historical pattern) in 

environmental sensor data streams.  Anomalous measurements can be caused by sensor 

or data transmission errors or by infrequent system behaviors that are often of interest to 

scientific and regulatory communities; thus real-time anomaly detection can be used for 

data quality control and analysis, adaptive sampling, and anomalous event detection. 

 

1.1 Objectives and Scope 

As discussed previously, there are many open problems in the field of modeling large-

scale systems.  These problems have eluded solution by traditional techniques, because of 

the inability of traditional techniques to scale up to large systems and the uncertainty 

inherent in these systems.  Data mining employs computational techniques from statistics, 

machine learning, pattern recognition, and other disciplines to extract knowledge from 

data (Han & Kamber 2006) and is well-suited for developing economical models of 

complex systems and deriving understanding about the fundamental processes of these 

systems.  This research explores how emerging data mining methods can be used to 
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address complex environmental systems problems.  Specifically, the objectives of this 

research are: 

Objective 1: To explore the upscaling of models of solute transport using data 

regarding both the fine-scale and the large-scale transport processes. 

Objective 2: To explore data-driven methods for identifying anomalous data (i.e. data 

that deviate markedly from the historical trend) within environmental data streams 

in real time. 

Objective 3: To explore the efficacy of different data-driven anomaly detection 

methods for use in environmental observation networks. 

 

1.2 Summary of Research Approach 

The primary objective of this research was to explore how emerging data mining methods 

can be used to address complex environmental systems problems.  To achieve this 

objective, several data mining methods are applied to two case studies.  The first case 

study addresses the creation of upscaled models, and the second case study addresses the 

challenge of identifying anomalous data in environmental sensor data streams.  Chapter 2 

reviews the existing literature and background information on upscaling of solute 

transport models and anomaly detection.  Chapter 3 summarizes the data mining methods 

that will be used in the two case studies. Chapter 4 presents a new data-driven method for 

upscaling models of solute transport in porous media.  Chapters 5 and 6 present new 

anomaly detection methods that can address streaming environmental data in real time. 

The remainder of this chapter presents more detailed summaries of the chapters of this 

dissertation. 
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1.2.1 Chapter 2: Data Mining Methods 

Chapter 2 offers a general introduction to data mining.  As data mining is a broad 

discipline, the discussion is quickly narrowed to focus on the data mining methods that 

were used in this research.  These methods include genetic programming, clustering, 

perceptron, artificial neural networks, nearest neighbor methods, and dynamic Bayesian 

networks.  The discussion of each method covers its most common variants as well as 

strategies for determining method parameters.  The implementation details of the specific 

variant of each method used in this research are also given. 

 

1.2.2 Chapter 3: Literature Review 

Chapter 3 provides a review of the approaches used to address both the upscaling of 

models of solute transport and the detection of data anomalies.  The discussion of 

upscaling methods covers stochastic, spatial filtering, and statistical moment methods, 

and explains the motivation for exploring new upscaling methods.  The discussion of 

anomaly detection methods begins by introducing traditional methods suitable only for 

detecting anomalies in historical data records.  Then, methods designed to address real-

time detection of anomalies in streaming data are discussed, along with their limitations.  

These methods include redundancy methods, Bayesian methods, rule-based approaches, 

and hybrid methods. 
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1.2.3 Chapter 4:  Upscaling Models of Solute Transport in Porous Media through 

Genetic Programming 

Chapter 4 investigates the development of upscaled solute transport models using genetic 

programming (GP), a domain independent modeling tool that searches the space of 

mathematical equations for one or more equations that describe a set of training data. An 

upscaling methodology is developed that facilitates both the GP search and the 

implementation of the resulting models. A case study is performed that demonstrates this 

methodology by developing vertically-averaged equations of solute transport in perfectly 

stratified aquifers. The solute flux models developed for the case study are analyzed for 

parsimony and physical meaning, resulting in an upscaled model of the enhanced 

spreading of the solute plume, due to aquifer heterogeneity, as a process that changes 

from predominantly advective to Fickian. This case study not only demonstrates the use 

and efficacy of GP as a tool for developing upscaled solute transport models, but it also 

provides insight into how to approach more realistic multi-dimensional problems with 

this methodology. 

 

1.2.4 Chapter 5: Real-Time Autoregressive Data-Driven Anomaly Detection in 

Streaming Environmental Data 

Chapter 5 develops a real-time anomaly detection method for environmental data streams 

that can be used to identify data that deviate from historical patterns. The method is based 

on an autoregressive data-driven model of the data stream and its corresponding 

prediction interval. It performs fast, incremental evaluation of data as they become 

available; scales to large quantities of data; and requires no a priori information 
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regarding process variables or types of anomalies that may be encountered. Furthermore, 

this method can be easily deployed on a large heterogeneous sensor network. Sixteen 

instantiations of this method are compared based on their ability to identify measurement 

errors in a windspeed data stream from Corpus Christi, Texas. The results indicate that a 

neural network model of the data stream, coupled with replacement of anomalous data 

points, performs well at identifying erroneous data in this data stream. 

 

1.2.5 Chapter 6:  Real-Time Bayesian Anomaly Detection in Streaming 

Environmental Data 

Chapter 6 develops two automated anomaly detection methods that employ dynamic 

Bayesian networks (DBNs). Dynamic Bayesian networks are Bayesian networks with 

network topology that evolves over time, adding new state variables to represent the 

system state at the current time. Filtering (e.g. Kalman filtering or Rao-Blackwellized 

particle filtering) can then be used to infer the expected value of unknown system states, 

as well as the likelihood that a particular sensor measurement is anomalous. 

Measurements with a high likelihood of being anomalous are classified as such. The 

methods developed in this chapter perform fast, incremental evaluation of data as it 

becomes available; scale to large quantities of data; and require no a priori information 

regarding process variables or types of anomalies that may be encountered. Furthermore, 

these methods can be easily deployed on large networks of heterogeneous sensors. Unlike 

the method presented in Chapter 5, the methods presented in Chapter 6 consider several 

data streams at once, using all of the streams concurrently to perform coupled anomaly 

detection. This study investigates these methods’ abilities to identify anomalies in eight 
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meteorological data streams from Corpus Christi, Texas, and compares the methods to 

those developed in Chapter 5.  The results indicate that DBN-based detectors, using 

either robust Kalman filtering or Rao-Blackwellized particle filtering outperform both a 

DBN-based detector using Kalman filtering and the autoregressive data-driven anomaly 

detection method developed in Chapter 5 for identifying synthetic anomalies.  These 

methods were also successful at identifying data anomalies caused by two real events: a 

sensor failure and a large storm. 

 

1.2.6 Chapter 7:  Concluding Remarks 

The final chapter of this dissertation summarizes the findings of the studies contained 

therein and suggests ways that the developed methods could be fruitfully extended in the 

future, in order to better address large-scale problems of environmental interest through 

the promising methods of data mining. 
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Chapter 2:  Data Mining Methods 

Data mining employs computational techniques from statistics, machine learning, pattern 

recognition, and other disciplines to extract knowledge from data (Han & Kamber 2006).  

In general, data mining tasks can be divided into two categories: descriptive and 

predictive.  Descriptive data mining tasks characterize the general properties of data and 

include tasks such as finding frequent patterns, associations, or correlations among the 

data.  Predictive data mining tasks use data to infer future events.  For example, historical 

precipitation records can be used to predict the expected rainfall during future months.  

As this research will make use of only predictive data mining tools, descriptive data 

mining tools will not be discussed in detail here.  For more information about these types 

of tools see Han and Kamber (2006). 

 

This chapter will be devoted to a description of the predictive data mining methods that 

will be used in this research.  In order to facilitate the description, a simple example of 

predicting the flow rate of a river, based on measurements of the stage (flow depth) and 

linear velocity, will be employed throughout. 

 

Predictive data mining methods learn concepts from data through a process referred to as 

“training,” which is performed using “examples,” or sets of features that describe the 

target concept (e.g. the system behavior corresponding to the examples).  In our river 

flow example, the target concept is the relation between the features stage and the 

measurements of velocity and flow.  Each example can be expressed as an n-dimensional 

vector of features; thus, each example exists as a point in an n-dimensional coordinate 
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system, commonly referred to as “feature space.”  In our river flow example, the feature 

space is two-dimensional (i.e. stage and velocity).  If the outcome of the concept, the 

“target value” (i.e. the river flow rate in our example), is known for one or more of the 

examples, it may also be used for training; however, there are tools that can learn 

concepts without knowing the target value.  If the target value is known for every training 

example, then the training is considered to be supervised.  If the target value of one or 

more training examples is unknown, then the training is considered to be semi-supervised, 

and if no target values are known, then the training is considered to be unsupervised.  

Training can either take place “on-line,” where modification of a learned target concept 

takes place after presenting an individual example to the tool, or in “batch,” where a set 

of examples, the “training set,” is presented at once to the tool, followed by modification 

of the concept. 

 

Before data mining can be performed, the data must be prepared for mining.  This 

preparation includes three steps: (1) data cleaning, (2) feature transformation, and (3) 

feature selection.  Data cleaning involves removing faulty or unreliable records from the 

data archive.  Feature transformation involves performing mathematical operations on the 

features in the data archive.  Some common data transformations involve normalizing the 

features to some finite range or creating new aggregated features.  Many data mining 

tools benefit from normalizing all the features in the examples to a uniform range (e.g 

zero to one), when the numeric range of different features varies widely in magnitude.  

Creating new features through aggregation is beneficial for learning complex concepts 

with tools with limited expressive abilities.  In our river flow example, aggregation can 
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be used to create new features that are unitless, such as the Reynolds number (Fischer et 

al. 1979).  Unitless features are valuable in modeling physical processes, because they 

ensure that the resulting equations are consistent in terms of units.  Feature selection 

involves selecting only salient features from which to compose training examples.  This 

step defines the dimensionality of the feature space and, thus, has a major impact on the 

complexity of the concept being learned.  If the feature space is unnecessarily large, then 

it will be more difficult to learn a particular concept than if the feature set had been 

selected correctly (Kohavi & John 1997).  Selecting the optimal feature set, however, is 

non-trivial, Kohavi and John (1997) review several popular methods for feature set 

selection. 

 

The data mining techniques used in this research include genetic programming (GP), 

clustering, artificial neural networks (ANNs), nearest neighbor, and Bayesian methods.  

The remainder of this chapter summarizes each of these techniques. 

 

2.1 Genetic Programming 

Genetic programming is a domain independent method that creates a model based on 

input data, by searching the space of possible models.  This search uses operations 

inspired by natural evolution, which allow GP to cultivate a diverse set of approaches to 

solving the problem (Banzhaf et al. 1998).  Genetic programming has been used 

successfully for many applications, ranging from electrical circuit design and molecular 

biology (Koza et al. 1999) to rainfall-runoff modeling (Savic et al. 1999).  Babovic and 

Abbott (1997b) present four applications of GP in the field of hydrology.  The results of 
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each of these applications illustrate different strengths of GP: (1) its to model “emergent 

phenomena,” (2) its to find models of data that match human derived models, (3) its to 

find models of phenomena that are of higher quality than human derived models, and (4) 

its ability to find models of complex phenomena that are equally accurate, yet simpler to 

solve, than many human derived models. 

 

GP can create models composed of any set of elementary units whose behavior is well 

defined (e.g. circuit components).  In this research, however, GP will be used to suggest 

models in the form of mathematical equations, a task referred to as symbolic regression.  

Regression is the most familiar method of determining relationships between data and 

known parameters.  In traditional regression methods, first a model structure is selected.  

Then, the coefficients of that model are estimated, based on available data, using a 

model-fitting algorithm.  This method builds the user's bias into the resulting relationship 

through the functional form of the model chosen for regression.  Symbolic regression, 

however, is a less biased method of determining a relationship between data and known 

parameters because it determines, based on the available data, not only model coefficients, 

but also the functional form of the model itself (Babovic & Bojkov 2001). 

 

The process of symbolic regression begins with the establishment of a population of 

models that has been randomly generated from sets of independent variables and 

mathematical operators.  Each model can be conceptualized as a hierarchy of building 

blocks connected via mathematical operators, each of which is a valid mathematical 

statement.  These building blocks will hereafter be referred to as clauses.  The search for 
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models that best fit the data is directed by one or more objectives that describe the desired 

qualities of the model.  The fitness of a candidate model is based on its fulfillment of 

these objectives.  The search progresses as a series of iterations known as epochs, and the 

population in each successive epoch is generated by selecting some of the models for 

propagation.  Selection favors models with higher fitness.  Models are propagated into 

the next epoch, either without modification or with modification, through the operations 

of crossover or mutation.  Crossover is performed by swapping clauses between two 

equations, whereas mutation is performed by altering an independent variable, constant, 

or mathematical operator in an equation.  

 

In this research, a symbolic regression implementation known as adaptive logic 

programming (ALP) was used.  ALP employs the concise language of logic 

programming to facilitate the search through the space of possible mathematical 

equations.  This language enables convenient performance of crossover and mutation and 

avoidance of syntactically incorrect equations via these operations.  More information 

regarding the ALP system can be found in Keijzer et al. (2001). 

 

While other data-driven methods exist that will create black box models that map input 

data to outputs (e.g. artificial neural networks), symbolic regression provides the benefit 

of expressing the models in the language of mathematics; hence, they can be analyzed for 

information regarding the underlying processes that created the data.  This information 

can lead to new understandings of the physical processes being modeled. 
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While symbolic regression provides the advantage of constructing models without 

domain specific knowledge, the field of application or desired use of the model may 

impose constraints.  In the case of this research, three goals required the imposition of 

constraints on the symbolic regression task, based on the desire to create: (1) physically 

meaningful models, (2) parsimonious models, and (3) models that are expressed as partial 

differential equations (PDEs). 

 

Models of the physical domain must be dimensionally consistent if they are to be 

considered meaningful; thus, it is necessary to constrain the GP search to only 

dimensionally consistent equations.  While this can be accomplished in many ways (e.g. 

Keijzer & Babovic 1999), it is most easily accomplished by converting the model 

parameters into dimensionless values—the strategy used in this study. 

 

In addition to dimensional consistency, model parsimony is desired, because it removes 

parameters that add to model uncertainty without compromising predictive ability, and 

because it renders models that are easier both to analyze for semantic meaning and to 

implement numerically.  Symbolic regression will not necessarily find the most concise 

form of a mathematical statement.  In fact, theoretical studies have shown that GP has a 

tendency to construct models with many extraneous clauses in an effort to protect salient 

clauses from the destructive effects of crossover and mutation (Banzhaf & Langdon 

2002), a phenomenon commonly referred to as “bloat.” Therefore, it is often necessary 

for the user to simplify the resulting models into statements that are easier to implement 

and analyze.  Useful strategies for the user to manually address model simplification 
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include converting mathematical operators to equivalent series representations (e.g. using 

a Maclaurin series to represent an exponential function) and replacing clauses that 

approximate constant values with constant-valued parameters. Furthermore, domain 

knowledge can be used to modify the model to address shortcomings in its predictive 

ability. 

 

2.2 Clustering   

Clustering is a method of partitioning data into subsets (clusters), such that the data 

within each subset are more similar to one another than they are to data in other subsets.  

Returning to our river flow scenario, examples with large values of stage and velocity 

would be partitioned into one cluster, examples with small values of stage and velocity 

would be partitioned into another cluster, and examples with small stage values and large 

velocity values would be partitioned into a third cluster.  Usually, example similarity is 

defined based on proximity within the feature space, according to some predefined 

distance metric.  Clustering algorithms can be divided into two types: hierarchical and 

partitioning.  Hierarchical algorithms construct clusters, either by iterative aggregation 

(called “agglomerative clustering”) or by iterative division (called “divisive clustering”) 

of previously constructed clusters.  Agglomerative algorithms begin by considering each 

data point as an individual cluster and then iteratively merging the closest clusters until 

some stopping criteria (e.g. minimum distance between clusters, number of clusters) has 

been reached.  Divisive methods begin by considering all the data points as a single 

cluster and then iteratively dividing the most distant clusters until some stopping criteria 
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has been reached.  Unfortunately, hierarchical clustering algorithms do not scale well to 

large data bases.   

 

Partitioning clustering algorithms, such as k-means or k-medoids, partition the data into k 

clusters, according to the cluster center to which the data are closest.  In k-means, the 

cluster center is defined as the average position in the feature space of all the data in the 

cluster, whereas in the k-medoids algorithm, the cluster center is defined as the most 

central data point in the cluster.  Each of these algorithms begins by randomly selecting k 

cluster centers and then partitioning the data and refining the estimate of the cluster 

center.  This process of partitioning and finding the cluster center is repeated iteratively 

until the location of the cluster center converges.  The k-means algorithm scales better to 

large data sets, but it is more sensitive to outliers in the feature space than the k-medoids 

algorithm.  Furthermore, the clusters found via the k-means algorithm may vary, 

depending on the initial choice of cluster mean, so it is often necessary to perform k-

means clustering several times to find the best clusters.  Unfortunately, if the number of 

clusters is not known a priori, then there is little guidance regarding how to select k, the 

number of clusters.  Hastie et al. (2001) suggest a method that uses the within-cluster 

scatter, which indicates the similarity of the points to their assigned cluster center, to give 

an indication of an appropriate number of clusters.  This method posits that if *k  clusters 

exist in the attribute space, then as the number of clusters is increased but is still less than 

*k , examples that belong in different clusters will be less likely to be assigned to the 

same cluster, resulting in a marked decrease in the within-cluster scatter.  However, as 

the number of clusters is increased and becomes greater than *k , true clusters will be 
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broken up, resulting in only a marginal decrease in the within-cluster scatter.  Thus, an 

appropriate value for k can be selected by plotting the within-cluster scatter (in log scale) 

versus k and selecting the value of k at which the slope of the curve decreases, causing an 

inflection. 

 

The clustering algorithm used in this research is a k-means algorithm (Han & Kamber 

2006) that was implemented in C++ by the author, following Han and Kamber (2006).  

The number of clusters can be specified a priori or learned from data using within-cluster 

scatter (Hastie et al. 2001). 

 

2.3 Perceptron and Artificial Neural Networks 

The perceptron maps an input vector xr  to an output scalar value y through the transform: 

bxwy T +⋅=
rr  (2.1) 

where wr  is a weight vector that defines the relationship between xr   and y .  In our river 

flow example, y would be the river flow rate, and xr  would be the feature vector 

composed of the values of stage and velocity.  The weight vector wr  is learned iteratively, 

by applying a small correction to each element iw  in the weight vector, proportional to 

both the perceptron’s error on a training pattern and the product ii xw .  This learning 

algorithm, called the “perceptron learning rule” (Rosenblatt 1958), traverses the error 

surface to find the point where the model error is minimized.  The perceptron can either 

be used as a classifier or as a regression tool.  The perceptron classifier employs a 

threshold function that maps the linear output to a binary output.  It can be seen from 
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Equation 2.1 that the perceptron is limited to linear functions of the input vector; thus, the 

perceptron is a linear classifier or a linear regression model.  This result led Minsky and 

Papert (1969) to suggest that the perceptron was too limited to be of practical use, 

resulting in decreased interest in perceptrons.  However, it was later shown that networks 

constructed of multiple layers of inter-connected perceptrons were capable of 

representing any non-linear function (Rumelhart et al. 1987).  These networks have 

commonly been referred to as either multi-layer perceptrons (MLPs) or artificial neural 

networks (ANNs). 

 

The structure of an ANN is best described as consisting of several layers, each consisting 

of one or more perceptron-like nodes.  These layers are usually referred to as input, 

hidden, or output layers, depending on their ordering.  The “input layer” is the first layer 

in an ANN and serves to pass the elements of the input vector to the next layer in the 

network.  Its name, however, is a misnomer, as it is not really a layer of perceptron-like 

nodes.  In our river flow example, the input layer would consist of two nodes 

corresponding to stage and velocity.  The final layer in an ANN is referred to as the 

“output layer,” because each of its nodes produces one element in the output vector, 

according to Equation 2.1.  In our river flow example, the output layer would consist of 

one node corresponding to the river flow rate.  Between the input and output layers are 

the “hidden layers,” so named because the inputs and outputs of these layers are neither 

the network inputs nor the outputs.  The output of each node in the hidden layers is 

calculated by applying a non-linear transformation to the node output calculated by 



 20

Equation 2.1.  The non-linear transformation commonly takes the form of a logit, sigmoid, 

or radial basis function (Bishop 1995). 

 

The most common form of ANN is one in which the connections proceed from the input 

layer to each successive hidden layer, and finally to the output layer, without cycles.  This 

type of network is called a feed-forward network.  Recurrent neural networks include one 

or more cycles.  These networks are often better at tasks such as sequence prediction, in 

which knowledge of previous network states is necessary (Elman 1990).  One simple 

recurrent network configuration, the Elman network (Elman 1990), includes cycles that 

connect each node in the single hidden layer back to the input layer.  Networks in which 

every node is connected to every other node are referred to as fully connected networks.  

Other types of ANNs include Hopfield networks (Bishop 1995) and Kohnen Self-

Organizing Networks (Han & Kamber 2006). 

 

The simplest approach for training feed-forward or recurrent networks is the error 

backpropagation method (Rummelhart et al. 1986), an iterative method similar to the 

perceptron learning rule.  Given a training example, this learning strategy attempts to 

approximate the error gradient with respect to the elements of each node’s weight vector, 

without taking into account the dependencies between nodes in adjacent layers.  

Although error backpropagation is easy to implement, it may require a large number of 

iterations to converge to a solution, and it may converge to locally optimal solutions 

rather than the global minimum in the error surface.   
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Another learning strategy involves posing the error minimization problem as a set of 

simultaneous equations, with one equation for each training example.  Assuming that 

there are more training examples than network weights, this set of equations is over-

determined, and the network weights can be solved using methods such as conjugate 

gradient or Levenberg-Marquardt (Bishop 1995).  These methods are often quicker than 

backpropagation and are less likely to converge to local optima.  It is important to note, 

however, that these methods are, by definition, batch learning algorithms. 

 

The most challenging aspect of applying ANNs is to select the number of hidden layers 

and the number of nodes in each hidden layer.  These parameters are referred to as the 

network’s architecture, and they determine the range of functions that the network can 

express; this range grows with the network size.  Unfortunately, under certain conditions 

(e.g. few training examples), more expressive networks are capable of memorizing the 

training examples, a phenomenon commonly referred to as “overtraining,” which leads to 

poor network generalization to previously unseen examples.  Thus, the task of selecting 

network architecture requires selecting architecture that is expressive enough to 

characterize the data, without being so expressive that it is prone to overfitting. 

 

While the network architecture is commonly selected by trial and error approaches 

(Bishop 1995, Hecht-Nielsen 1990), some theoretical guidance exists.  Bishop (1995) 

indicates that often, more than one hidden layer is not necessary.  Furthermore, the 

Kolmogorov Theorem states that any continuous function of n variables (i.e. the features 

in the training set) can be constructed by the superposition of 2n+1 linear models of one 
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variable, thus indicating that 2n+1 nodes in the hidden layer should be used (Bishop 

1995).  Unfortunately, this theorem does not specify what form the linear function of one 

variable should take, nor does it require that this form be constant for all of the 2n+1 

functions.  Furthermore, this large number of hidden nodes can often result in overfitting 

of the training data, resulting in an ANN that does not generalize well.  Thus, Hecht-

Nielsen (1990) suggests that architectures with mn +2 , where m is the number of 

outputs to 2n+1 nodes in the hidden layer, should be tried.  Duda et al. (2001), suggest 

that the number of weights should be related to the number of available training data 

points and recommend that the number of weights in the network should be equal to 1/3 

the number of training examples.  This guidance ensures that enough information is 

contained in the training set to learn the network weights; however, this method may 

recommend too many weights if the number of training examples is large. 

 

Due to the complexity of selecting an appropriate network architecture, some researchers 

have suggested methods for determining the architecture during the learning process.  For 

example, the optimal brain surgeon algorithm (Bishop 1995) decreases the expressivity of 

a network by removing connections between nodes that have weights below a particular 

threshold, while the multiple resource allocation neural network (Markus 2005) 

increases/decreases the number of hidden layers, if the network appears to be 

under/overfitting the training data. 

 

Like perceptron, ANNs can be used for either classification or regression; however, 

unlike perceptron, ANNs are capable of producing non-linear output.  Feed-forward and 
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recurrent neural networks have been shown to be successful for many applications, 

including tidal prediction (Huang et al. 2003, Balas et al. 2004), wind speed prediction 

(More & Deo 2003), rainfall-runoff modeling (Amenu et al. 2007), and other time-series 

data (Zhang & Qi 2005). 

 

The perceptron/ANN algorithm used in this research addresses only feed-forward 

architectures and was implemented in C++ by the author.  Network architecture must be 

specified a priori.  Network weights are learned from a training set using the standard 

backpropagation algorithm.  Training was terminated after a fixed number of training 

epochs were completed or when further training caused a decrease in the model 

performance on a testing set (Bishop 1995; Hastie et al. 2001). This latter condition 

discouraged overtraining of the network. 

 

2.4 Nearest Neighbor 

The nearest-neighbor method (Duda et al. 2001, Hastie et al. 2001) is a method for 

predicting the classification or outcome of a system state based on observable features.  

The target value of an unseen example is predicted to be the same as that of the nearest 

neighbor in the feature space.  Training the predictor only requires archiving the training 

set so that distances between new examples and the training examples can be computed 

quickly.  Prediction is performed by calculating the distances between the feature vector 

for prediction and each feature vector from the training set.  The training example with 

the shortest distance is the nearest neighbor, and the target value of the nearest neighbor 

is predicted to be the output of the system to the new example.  In our river flow example, 
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the flow rate for a particular combination of stage and velocity would be predicted to be 

the flow rate of the most similar (in feature space) previously observed example. 

 

As the number of training examples increases, this predictor will become more 

computationally demanding; thus, many optimizations have been suggested that attempt 

to reduce the number of distances actually computed.  For example, the feature space can 

be partitioned so that distances will only have to be computed within specific partitions 

known to contain the nearest neighbor.  Furthermore, the accuracy of the algorithm can 

be severely degraded by the presence of noisy or irrelevant features, or if the numeric 

range of the features varies widely.  Thus, feature selection and normalization (i.e. 

scaling the features such that they have the same numeric range) are very important 

preprocessing steps when using this algorithm. 

 

This method can be extended to consider more than one of the nearest training examples, 

where the classification of a new feature set is taken as the majority vote, and predictions 

can be made as the average response.  Furthermore, confidence in the prediction can be 

inferred from the homogeneity/heterogeneity of the target values of the training examples 

determined to be nearest to the new example.  This extension is called the k-nearest 

neighbor algorithm. 

 

The nearest neighbor algorithm used in this research was implemented in C++ by the 

author, using Euclidean distance as the distance metric.  This implementation is based on 

the nearest neighbor algorithm presented by Duda et al. (2001). 
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2.5 Dynamic Bayesian Networks 

Bayesian networks are members of the family of probabilistic graphical models (Jordan 

2002).  They represent a set of variables and their dependencies as directed acyclic 

graphs, whose nodes represent the variables and whose arcs represent the conditional 

dependencies between the variables.  The variables within the graphs can be either 

random or deterministic; thus, given a set of values of deterministic variables, the 

networks can be used for Bayesian inference (i.e. inference that is updated for a particular 

set of observed variable values) regarding the belief state (i.e. the joint probability 

distribution of the encoded variables conditioned on the values of the deterministic 

variables) of the random variables they encode.  Furthermore, the variables encoded in 

the network can be either discrete (e.g. night/day) or continuous (e.g. flow rate), and they 

can also be either scalar or vector quantities. 

 

Dynamic Bayesian networks (DBNs) are Bayesian networks whose network topology 

evolves with time; thus, they are well suited for modeling data sequences because new 

variables can be added incrementally to the network to represent new members of the 

sequence.  DBNs are generalizations of common state space models, such as hidden 

Markov models and Kalman filters (Murphy 2002), and they are well suited for time-

series modeling because of their flexibility in handling multivariate data and non-

stationary processes (Spall 1988). 
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Figure 2.1 illustrates a DBN model of time-series data.  In this DBN, the system state (X) 

at any given time is considered to be unknown and only observable through noisy 

measurements (Z).  The system state at any time t is represented by Xt , and the 

measurements of the system state at any time t are represented by vector Zt.  Each pair 

(Xt , Zt) is referred to as a time slice.  In our river flow example, the state variables (X) 

would be vectors representing the river stage and flow rate at any time t, while the 

observed variables (Z) would be stage measurements corresponding to time t.  The 

graphical structure of the DBN indicates that Xt is conditionally independent, given Xt-1, 

and that Zt is conditionally independent, given Xt.  The former conditional independence 

relationship is known as the first-order Markov condition.  Given the Markov assumption, 

the belief state completely captures all the information from the past (Boyen & Koller 

1999); thus, the DBN assimilates new measurements into its belief state, allowing it to 

model non-stationary processes. 

 

To fully specify a DBN, not only must the graphical structure of the network be specified, 

but the transition model (i.e. the model describing the evolution of the state variable 

distribution from time t to t+1) and the observation model (i.e. the model describing the 

Figure 2.1  Schematic of Dynamic Bayesian network. 
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relationship between the state variables and the observed variables) must also be 

specified.  If the state variables are Gaussian, and the transition and observation models 

are linear, then the required model parameters are the (1) transition matrix, (2) transition 

covariance matrix, (3) observation matrix, and (4) observation covariance matrix.  From 

the state-space modeling perspective, these models can be represented respectively as 

follows: 

),0(1 QNXAX tt +⋅=+  (2.2a) 

),0( RNXCZ tt +⋅=  (2.2b) 

where A is the transition matrix, Q is the transition covariance matrix, C is the 

observation matrix, R is the observation covariance matrix, N(0,Q) represents zero mean 

Gaussian noise with covariance matrix Q (the system noise), and N(0,R) represents zero 

mean Gaussian noise with covariance matrix R (the observation noise).  Note that A and 

C are not functions of time, and thus the process and measurement model’s dynamics are 

assumed to be time stationary.  This assumption is not inherent to state-space modeling in 

general, but it will be used throughout this research because of the added complexity of 

specifying time-varying dynamics models.  Often, the transition and observation models 

are known a priori.  However, if the models are not known, the expectation maximization 

(EM) method can be used to learn these models from a sequence of observed data 

(Ghahramani & Hinton 1996, Digalakis et al. 1993, Shumway & Stoffer 1982); the last 

reference suggests modifications to account for missing observations in the training data.  

The EM method is a two-step iterative process.  In the first step (E) of EM, an estimate of 

the model parameters is used to calculate the expected value of the likelihood that the 

models describe the observed system behavior.  The second step (M) analytically 
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calculates the maximum likelihood estimate of the model parameters, using the expected 

likelihood function found in the E step.  The parameters found in the M step are then used 

to begin another E step, and the process is repeated.  For a more thorough description of 

the EM method, see Duda et al. (2001).  If the state variables are discrete, then the 

transition and observation models take the form of discrete conditional probability tables, 

which can be learned using the Baum-Welch algorithm (Baum et al. 1970).  In this 

research the EM algorithm was only applied to the Kalman filter, and more details are 

given in Section 2.5.1.  The EM algorithm is significantly more complex for DBNs with 

more complex state distributions, such as those used for robust Kalman and particle 

filtering, and the data considered in this research (see Chapter 6) were not sufficient to 

adequately characterize these distributions. Therefore this approach is not discussed 

further for the more complex DBNs in Sections 2.5.2 and 2.5.3. 

 

Given the transition and measurement models, and a sequence of measurements of the 

system, DBNs can infer something about the true state of the system via filtering, 

prediction, smoothing, or most-likely-explanation.  Filtering refers to the inference of the 

current system state, given all measurements to date.  Prediction refers to the inference of 

some future system state, given all measurements to date.  Smoothing refers to the 

inference of a previous system state, given all measurements to date.  Most-likely-

explanation refers to the inference of the most likely sequence of system states that will 

result in the observed series of measurements.  Since this research focuses on real-time 

forecasting, only filtering will be discussed in this section.  For more information about 

prediction, smoothing, and most-likely-explanation, see Russell and Norvig (2003).   
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DBN filtering has a long history.  The most notable early work is attributed to Kalman 

(Kalman 1960).  Since then, many researchers have generalized this work and associated 

it with state-space models and hidden Markov models (e.g., Jordan 2002).  The result of 

this study is a well-known recursive algorithm for filtering DBNs (Murphy 2002).  In a 

recursive algorithm, data are processed sequentially, rather than in batch form; the 

complete set of data never needs to be stored prior to calculating the filtered estimate; and 

reprocessing of existing data is unnecessary if new measurements become available.  

Thus, recursive algorithms are well-suited for real-time forecasting of streaming data.  

Unfortunately, it is generally not possible to obtain analytical solutions for the Bayesian 

recursion relations required for exact filtering (Sorenson 1988).  The remainder of this 

section is devoted to describing Kalman Filtering, the most notable exception to this rule, 

as well as to discussing two approximate methods for filtering: robust Kalman filering 

and particle filtering. 

 

2.5.1 Kalman Filtering 

Kalman filtering is an analytical method of filtering a DBN, in which the system state is a 

continuously valued vector or scalar, and the state transition model is linear.  This 

algorithm can be extended to non-linear state transitions through data transformations, as 

in the case of the extended Kalman filter (e.g. Sorenson 1966, Anderson & Moore 1979).  

During the Kalman filtering recursion, the state vector at time t is propagated forward in 

time by using the state transition model to calculate the prior probability distribution of 

the state vector at time t+1.  Then, the available measurements are used to calculate the 
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posterior probability of the state vector at time t+1 using the observation model.  The 

Kalman filtering equations can be written as: 

( )ttttt XCAZKXAX ˆˆˆ
111 −+= +++  (2.3a) 

( )( )QAACKI ttt +Σ−=Σ Τ
++

ˆˆ
11  (2.3b) 

( ) ( )[ ] 1

1
ˆˆ −ΤΤΤΤ

+ ++Σ+Σ= RCQAACCQAAK ttt  (2.3c) 

where tX̂  is the filtered estimate of the posterior mean of the state vector at time t, Kt+1 is 

the Kalman gain matrix, tΣ̂  is the filtered estimate of the posterior covariance matrix, I is 

the identity matrix, and the symbol ( Τ ) indicates the matrix transpose.  The Kalman gain 

matrix blends the Bayesian prior of the state vector at time t+1 with the error between the 

prior and the observation.  The smaller the error covariance (R), the more the Kalman 

filter “believes” the observation, thus resulting in a larger gain matrix.  Larger error 

covariance results in less weight being given to observation, thus resulting in a smaller 

gain matrix. 

 

The Kalman filtering equations (Equation 2.3) can be adaptively modified during the 

recursion to accommodate missing or partially missing observations.  Missing 

observations occur when none of the measurements in the observation vector are 

available, while partially missing observations occur when a subset of the measurements 

in the observation vector are available.  In the case of a missing measurement, the state 

mean and covariance matrix of the Bayesian prior are used to define the belief state.  In 

the case of a partially missing measurement, the calculation of the Kalman gain matrix 

must be modified, such that the gain matrix elements corresponding to the missing 
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measurements are equal to zero (Liu & Goldsmith 2004, Schumway & Stoffer 1982).  

This is accomplished by setting the missing measurements, as well as the elements of 

matrices C and R that correspond to the missing measurements, equal to zero.  For 

example, if there are two measurements, and the measurement stored in position 1 of the 

measurement vector is missing, then the element in position 1 of the measurement vector 

and the elements in positions (1,1), (1,2), and (2,1) of matrices C and R would be set to 

zero. 

 

To learn the Kalman filter parameters A, C, R, and Q in Equations 2.3 a-c from a 

sequence of data, the EM method discussed previously is used.  The EM method is a 

general iterative optimization method that seeks to find the value of an unknown 

parameter that maximizes the joint probability of the state and measured variables given a 

set of measured variables.  This method proceeds in two steps: an E step and an M step.  

Application of the EM method to the task of parameterizing a Kalman filter begins with 

the E step, which uses an estimate of the model parameters to calculate the expected 

value of the likelihood function.  The initial values of the model parameter estimates are 

set by the user, who makes a best guess at their values.  In the M step, the maximum 

likelihood estimate of the model parameters are calculated using the expected likelihood 

function found in the E step.  The parameters found in the M step are then used to begin 

another E step, and the process is repeated.   

 

The E step for Kalman filter parameterization begins by calculating the expected 

likelihood function of the states and their observations.  The joint probability of the 
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predicted states at each time t and the observations that correspond to these states can be 

expressed as:  

{ } { } ( ) ( ) ( )∏∏
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where {X} denotes the set of state vectors, {Z} denotes the set of all observation vectors, 

Xt is the state at time t, Zt is the observation at time t, P(Xt | Xt-1) is the probability of Xt 

conditioned on Xt-1, and P(Zt |Xt) is the probability of Zt conditioned on Xt.  Since the 

Kalman filter assumes that the joint distribution of the state and observation vectors is 

Gaussian, substituting the equation for the multivariate Gaussian into Equation 2.4 and 

taking the natural logarithm retains the behavior of the likelihood function and reduces 

Equation 2.4 to a sum of quadratic terms: 
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where p is the dimensionality of the state vector; k is the dimensionality of the 

observation vector;  µ1 and  V1 are the mean and the covariance matrix of the initial state 

distribution, respectively; the operator ( Τ ) indicates the matrix transpose, and the 

operator (| |) indicates the matrix L2-norm.  The expectation of this log-likelihood, given 

the sequence of training observations is: 
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where tX~  and tΣ
~  are the mean and variance of the posterior state distribution given the 

full sequence of data (both past and future observation), not just the previous data; 1,
~

−ttP  

is the posterior covariance of the system state at times t and t-1 given the full data 

sequence; n is the number of measurements in the training sequence; and tr indicates the 

matrix trace.  Since these quantities depend on the full sequence of data (both past and 

future observation), not just on the previous data, the Kalman filtering relationships are 

insufficient to calculate them; however, Kalman smoothing can be used to calculate these 

quantities. 

 

Kalman smoothing is performed using a recursive algorithm often referred to as the 

forward-backward algorithm (Russel & Norvig 2003).  Given a set of observations, this 

algorithm performs two sequential processing steps.  In the first step, the data are 

processed in chronological order, and Kalman filtering is performed with the filtered state 
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estimate (i.e. tX̂  and tΣ̂ ) being stored at each time slice.  In the second step, the data are 

processed in anti-chronological order, and the Kalman smoothing recursions are 

performed, as detailed in the following equations: 
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where tX~  and tΣ
~  are the smoothed state distribution mean and variance, respectively.  

Shumway and Stoffer (1982) have shown that during the backwards smoothing recursion, 

1,
~

−ttP  can be calculated as: 

( )Τ−−+−−− Σ−+Σ= 11,1111,
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ttttt
T

tttt JAPJJP  (2.8) 

Equations 2.3, 2.7, and 2.8 provide the values necessary to compute the expected log-

likelihood function in Equation 2.6, thus concluding the E step. 

 

In the M step, the maximum likelihood estimates of the model parameters are calculated 

by setting the partial differential of Equation 2.6 to zero.  For the parameters A, C, and Q 

of Equation 2.3, the updated parameter estimates are: 
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where r indicates the EM iteration counter. 
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An update equation for the measurement model is not given, since the relationship 

between the system state and the sensor’s output is often known (as was the case in this 

work: see Section 6.1); however, this update equation can be derived using the method 

described above, as well.  After updating the parameter values in the M step, the 

sequence of E and M steps is repeated until further updates do not increase the likelihood 

function.  It can be shown that each EM iteration increases the observed data likelihood 

function. However, there is no guarantee that the sequence converges to a maximum 

likelihood estimator; in fact, since the likelihood function converges to infinity as the 

joint probability distribution narrows to a degenerate distribution centered on one of the 

training data points, care must be taken to find a local maximum of the likelihood 

function that provides good performance on the test data.  Thus, many EM trials, starting 

from different initial conditions, may be necessary.  For example, in Chapter 6, four trials 

were carried out before a result that was not caused by this degeneracy was found. 

 

Because the state and observation vectors are normally distributed, and because the state 

transition and observation models are linear, the prior and posterior distributions can be 

calculated analytically, resulting in a compact representation of the belief state of the 

DBN (i.e. mean and covariance matrix), as well as in efficient updates to accommodate 

new measurements. While the linear Gaussian assumption is a strong assumption, 

Kalman filters have been successful at modeling time-series data in a wide variety of 

applications, such as aerospace studies (e.g. Schmidt 1981), economics (e.g. Johnson & 
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Sakoulis 2003), computer graphics engineering (e.g. Welch et al. 2001), and 

hydrodynamic modeling (e.g. Yonekawa & Kawahara 2003). 

 

The Kalman filtering algorithm used in this research was implemented in C++ by the 

author, following Maybeck (1979).  Missing and partially missing observations are 

addressed using the modification of the Kalman gain matrix adapted from Liu and 

Goldsmith (2004) and Schumway and Stoffer (1982).  Transition and observation model 

parameters can either be learned via EM (Ghahramani & Hinton 1996, Digalakis et al. 

1993, Shumway & Stoffer 1982) or be specified a priori.  

 

2.5.2 Robust Kalman Filtering 

Not only does Kalman filtering require the strong assumption of linear Gaussian 

distributions, but it is also not robust, since, as can be seen in Equation 2.3, the mean of 

the Bayesian posterior distribution is an unbounded function of the discrepancy between 

the observation and its Bayesian prior, while the variance does not depend on the 

observed data.  Thus, the model cannot adapt for changes in the measurement variance, 

and outlying observations will adversely affect inferences about the belief state (Schick & 

Mitter 1994, Meinhold & Singpurwalla 1989).  Robust Kalman filtering is an 

approximate method of filtering a DBN that retains the advantages of Kalman filtering 

(e.g. fast updates for new measurements and compact representation of the belief state), 

while still addressing the problem of outliers explicitly within the DBN structure by 

permitting the use of heavy-tailed distributions in place of the multivariate Gaussian 

distributions required for Kalman filtering.  The assumption of linear transition and 
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observation models is also used in robust Kalman filtering.  The remainder of this 

subsection will describe two approaches for robust Kalman filtering that employ 

Student’s t-distributions and mixture-of-Gaussian (MoG) distributions, respectively. 

 

Student’s t-distribution is similar to the Gaussian distribution, except that Student’s t-

distribution uses the estimator for the population standard deviation given the population 

size (N), instead of using the true standard deviation (Note: the quantity N-1 is often 

referred to as the number of degrees of freedom).  Thus, Student’s t-distribution is 

considered to be the distribution that best describes a variable, if the variable’s standard 

deviation is uncertain (Devore 1995).  With one degree of freedom, Student’s t-

distribution is equivalent to the standard Cauchy distribution.  As the number of degrees 

of freedom increases, the Student’s t-distribution converges to the standard normal 

distribution.   Student’s t-distribution can be used for robust Kalman filtering if the 

distribution of the state and observed variables are specified to be Student’s t-

distributions with n and m degrees of freedom, respectively, where n and m are chosen to 

attain the desired level of robustness (e.g. Meinhold & Singpurwalla 1989).  

Unfortunately, the use of multivariate Student’s t-distributions violates the behavior of a 

robust Kalman filter because the posterior distribution calculated after observing an 

outlying measurement does not converge to its prior (Dawid 1973), so it is necessary to 

approximate the multivariate Student’s t-distribution by assuming independence of the 

variables and approximating the multivariate posterior distribution of the belief state as a 

poly-t (i.e. a mixture of Student’s t-distributions) distribution (Broemeling 1985).  Since 

the number of components in the poly-t distribution will grow as an exponential function 
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of the number of time slices evaluated by the robust Kalman filter, it is necessary to 

approximate the poly-t distribution itself to limit the number of mixture components (e.g. 

see Jeffreys 1961). 

 

The probability density function of the MoG distribution is represented as a weighted 

average of the probability distribution functions of Gaussian mixture components: 

( ) ( )∑=
i

ii xfxf α  (2.10) 

where iα  is the mixture ratio – the weight of the ith  mixture component, 1=∑i iα , and 

( )xfi  is the probability density function of the ith mixture component.  For example, a 

MoG distribution with two components with means and variances of (0,1) and (0,10), 

respectively, will have heavy-tailed behavior, due to the second mixture component.  The 

amount of probability mass residing in the tails of this distribution can be further 

controlled by adjusting the α values.  Robust Kalman filtering using MoG representations 

of the state and observed variables can be envisioned as using a mixture of Kalman filters, 

each specific to one Gaussian mixture component.  The mixture ratios for the state and 

observed variable distributions are specified as priors, which are updated given new 

observations, as shown by Frühwirth (1995) and Guttman & Peña (1988), respectively.  

As in the case of the poly-t distribution, the number of components of the MoG 

distribution will increase exponentially with the number of filtered time slices.  Therefore, 

it is necessary to approximate the MoG distribution to limit the number of components.  

This is done by approximating the MoG posterior distribution as a Gaussian distribution 

with mean: 
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∑=
i

iiµαµ  (2.11) 

and variance: 

( )∑ −Σ=Σ
i

iii
2µα  (2.12) 

where iµ  and iΣ  are the mean and variance of the ith mixture component, respectively.  

This approximation minimizes the Kullback- Liebler distance between the MoG and its 

Gaussian approximation and has been shown to be the optimal Gaussian approximation 

of the MoG (Peña & Guttman 1989). 

 

The robust Kalman filtering algorithm used in this research was implemented in C++ by 

the author using MoG distributions to accommodate outliers (Frühwirth 1995, Guttman & 

Peña 1988).  Missing and partially missing observations are addressed using the 

modifications to the Kalman gain matrix and the matrices C and R described in Section 

2.5.1.  Transition and observation model parameters of the mixture components, as well 

as the mixture ratio priors, must be specified a priori. 

 

2.5.3 Particle Filtering 

Both Kalman filtering and robust Kalman filtering are restricted to system state 

distributions of only continuously-valued variables.  If the system state is composed of a 

hybrid of continuous- and discrete-valued variables, then filtering must be performed 

with approximate methods that represent the hybrid distributions through sampling 

(Arulampalam et al. 2002, van der Merwe et al. 2000, Gordon et al. 1993).  These 

methods are called sequential Monte Carlo methods or particle filters.  Particle filters 
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maintain a cloud of “particles” that are a representative sample of the hybrid distribution 

of the belief state of the DBN.  Thus, particle filters do not have a concise representation 

of the belief state like Kalman and robust Kalman filters do.  The cloud of particles can 

be used to approximate the likelihood of different states or observations, as well as the 

expected values of these variables, by enumerating the frequency of the particles with 

different values.  The particles are propagated from one time slice to the next, through 

transition and observation models that can be based on sampling conditional transition 

distributions (similar to hidden Markov models) or on analytical relations (similar to 

Kalman filters).  Transition and observation models based on sampling transition 

distributions allow the particle filters to address non-linear and non-Gaussian state 

variables, but also result in particle filters that are extremely computationally intensive; 

thus, these models are intractable for large systems (Doucet et al. 2000a). 

 

The Rao-Blackwellized particle filter is a special type of particle filter that uses the Rao-

Blackwell formula (Casella & Robert 1996) to separate the continuous and discrete state 

variables.  This separation of variables requires only that the discrete variables be 

conditionally independent of the continuous variables (both continuous variables and 

discrete variables can be conditionally dependent on discrete variables) (Doucet et al. 

2000a).  Discrete variables that are conditionally independent from other discrete 

variables are propagated through time using sampling of the conditional transition 

probabilities, while continuous variables can be propagated through time using more 

economical transition models, such as those used in Kalman or robust Kalman filtering, 

thus resulting in significantly increased computational economy (Doucet et al. 2000a, 
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Doucet et al. 2000b).  For example, if the transition and observation models of the 

continuous variables are assumed to be linear Gaussian, then the Kalman filtering 

equations (Equation 2.3) can be modified to describe the continuous variables as: 
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where the superscript i indicates the ith particle, and the subscript k indicates the value of 

the discrete variables upon which X is conditionally independent.  A resampling step 

during the update is used to ensure that the particles stay focused in high probability 

regions of the posterior belief state distribution, such that the particles maintain a 

representative sample of this distribution (Koller & Lerner 2000). 

 

The Rao-Blackwellized particle filtering algorithm used in this research was implemented 

in C++ by the author using the linear Gaussian assumption described in Equation 2.13 

(Doucet et al. 2000a).  Missing and partially missing observations are addressed using the 

modifications to the Kalman gain matrix and the matrices C and R described in Section 

2.5.1.  Transition and observation model parameters of the discrete and continuous 

variables must be specified a priori. 



 42

Chapter 3:  Literature Review 

To explore the efficacy of the tools and techniques described in the previous section for 

solving complex problems of environmental interest, two illustrative applications will be 

explored: (1) upscaling models of solute transport in porous media, and (2) anomaly 

detection in environmental sensor data streams.  The remainder of this chapter describes 

each of these applications. 

 

3.1 Upscaling Models of Solute Transport in Porous Media 

Solute transport in porous media is fundamental to many significant engineering 

problems, such as design of subsurface waste storage facilities, performance and 

assessment of underground waste repositories, remediation of contaminated groundwater 

aquifers, and design of packed bed chemical reactors.  Thus, modeling this process is an 

area of active research in many disciplines.  One popular method of modeling the 

movement of solute through porous media involves the use of physically-based 

mathematical equations based on conservation of momentum and mass.  Darcy's Law and 

the advection-dispersion equation (ADE) are widely accepted as the equations governing 

flow and transport of groundwater and dissolved substances at the continuum-scale, the 

length scale at which the heterogeneous aggregation of soil grains can be treated as a 

homogeneous spatially-averaged material.  It is now well recognized, however, that 

natural porous media exhibit significant spatial variability at the continuum-scale and that 

this variability has a profound impact upon solute fate and transport at the larger field-

scale relevant to environmental and hydrological problems.  The effect of this variability 
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on solute transport is enhanced spreading, a phenomenon referred to as macrodispersion.  

Detailed measurements at several field sites (Sudicky 1986, Mackay et al. 1986, LeBlanc 

et al. 1991) have revealed that the length scale of significant conductivity variations is on 

the order of a few meters in the horizontal direction but only ten to twenty centimeters in 

the vertical direction.  Therefore, computational limitations prevent the use of a transport 

model grid fine enough to resolve all of the spatial scales of this variability.  Furthermore, 

many problems of environmental interest require solving the transport models many 

times (e.g. through the use of Monte Carlo simulations); thus, a need exists for more 

economical models of solute transport.  For this reason, much effort has been directed 

towards developing models that describe transport processes at a length scale larger than 

the continuum-scale so that coarse computational grid blocks may be used.  These 

“upscaled” models cannot explicitly resolve all of the salient features of the transport 

process, yet they should capture the impact of the small-scale heterogeneity in order to 

provide an accurate prediction of the overall plume evolution. 

 

Traditional methods for upscaling the ADE include stochastics (Gelhar et al. 1979, 

Dagan 1986, Sposito 1997, Rubin 2003, Rubin et al. 2003), spatial filtering (Beckie et al. 

1996, Beckie 1998), homogenization (Mei 1992, Wood et al. 2003), and statistical 

moments (Aris 1956, Frankel & Brenner 1989, Kitanidis 1992, Whitaker 1999).  

Unfortunately, although these methods are mathematically rigorous, they usually require 

restrictive assumptions, such as small variability, large scale separation, or ergodicity or 

periodicity of the medium, to achieve closure of the upscaled models. 
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Chapter 4 discusses the development of  an upscaling methodology using genetic 

programming (GP), a promising new tool for modeling complex phenomena whose 

physics are not well defined (Babovic & Abbott 1997a).  For illustration, this 

methodology is applied to the case of developing vertically averaged models of the 

transport of a non-reactive solute in confined stratified aquifers.  The results are 

compared with models developed through the method of moments (MoM), a traditional 

upscaling technique that is well suited for this transport configuration (Güven et al. 1984). 

 

3.2 Anomaly Detection in Streaming Environmental Sensor Data 

Modeling environmental systems requires many parameters, including spatial properties, 

boundary and initial conditions, and process-related coefficients.  Unfortunately, for 

complex systems, the necessary information is often not readily available, thus requiring 

researchers to use approximations and best guesses.  For example, decision-makers have 

traditionally relied on historical or averaged seasonal data to predict the response of 

environmental systems to events of interest, such as contaminant releases.  Unfortunately, 

reliance on these types of data limits the value of these predictions for coordinating real-

time responses to such events.  Elliott and Jones (2000) and Guinasso et al. (2001) 

present case studies in which real-time data successfully indicated the trajectory of oil 

slicks caused by tanker accidents, whereas the trajectory predicted using models relying 

on averaged historical data differed significantly.  In the latter case, decisions facilitated 

by the real-time data allowed the clean-up effort to be focused on the coastal areas 

affected by the oil slick, thus increasing clean-up efficiency. 
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In-situ environmental sensors are sensors that are physically located in the environment 

they are monitoring.  They collect time series data that flow continuously to a repository, 

creating a data stream.  Recently, there have been efforts to make use of streaming data 

from environmental sensors for real-time applications.  For example, draft plans for the 

Water and Environmental Research Systems (WATERS) Network, a proposed national 

environmental observatory network, have identified real-time analysis and modeling as a 

significant priority (NRC 2006).  The value of streaming data for real-time forecasting 

and decision making has been demonstrated using a simulated oil spill (Bonner et al. 

2002), and continuing efforts are being directed towards facilitating near-real-time 

hydrodynamic forecasting using these data (Shah et al. 2005). 

 

Because in-situ sensors operate under harsh conditions, and because the data they collect 

must be transmitted across communication networks, the data can easily become 

corrupted.  Undetected errors can significantly affect the data’s value for real-time 

applications.  Thus, a report from a National Science Foundation-funded workshop on 

sensors for environmental observatories (NSF 2006) has indicated a need for automated 

data quality assurance and control (QA/QC) that occurs in real time.  Anomaly detection 

is the process of identifying data that deviate markedly from historical patterns (Hodge & 

Austin 2004).  Anomalous data can be caused by sensor or data transmission errors or by 

infrequent system behaviors that are often of interest to scientific and regulatory 

communities.  In addition to data QA/QC, where anomalous data are treated as erroneous, 

anomaly detection has many other practical applications, such as adaptive sampling, 

where anomalous data indicate phenomena that researchers may wish to investigate 
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further through increased sampling, and anomalous event detection, where anomalous 

data signal system behaviors that require other actions to be taken, for example in the 

case of a natural disaster.  These applications require real-time detection of anomalous 

data, which requires that the anomaly detection method be rapid and be performed 

incrementally to ensure that detection keeps up with the rate of data collection.  

Additionally, successful real-time anomaly detection in environmental streaming data 

must surmount four additional challenges: (1) continuous collection of streaming data 

results in a large volume of data, thus, the entire data set cannot be held in memory nor 

can all existing data be reprocessed when new measurements become available; (2) real-

time decisions can only use previous observations, thus, future observations cannot be 

used for anomaly classification; (3) environmental sensors go off-line frequently because 

of the harsh environment they are deployed in, thus, if a significant number of specific 

historical measurements are necessary to process a new measurement, many 

measurements will not be able to be processed; and (4) sensors deployed in the natural 

environment behave in unexpected ways; thus, no a priori definition of the types of 

anomalies that may be encountered is available. 

 

Traditionally, anomaly detection has been carried out manually with the assistance of 

data visualization tools (Mourad & Bertrand-Krajewski 2002), but these approaches are 

too time consuming for real-time detection in streaming data (e.g., wind data from the 

sensors used in this study are generated at a rate of one sample per second).  More 

recently, researchers have suggested automated statistical and machine learning 

approaches, such as minimum volume ellipsoid (Rousseeuw & Leroy 1996), convex 
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pealing (Rousseeuw & Leroy 1996), nearest neighbor (Tang 2002, Ramaswamy et al. 

2000), clustering (Bolton & Hand 2001), neural network classifier (Kozuma et al. 1994), 

support vector machine classifier (Bulut et al. 2005), and decision tree (John 1995).  

These methods are faster than manual methods, but they have drawbacks that make them 

unsuitable for real-time anomaly detection in streaming data.  For example, some require 

all of the data to have accumulated before anomalies can be identified; some are 

computationally intractable for large quantities of data; some require pre-classified 

anomalous data, which characterize all anomalies that may be encountered; and some 

require pre-classified non-anomalous data, which characterize the range of possible non-

anomalous data.   

 

Several researchers have suggested anomaly detection methods specifically designed for 

real-time detection in streaming data.  These methods can be divided into four categories: 

(1) redundancy-based approaches, (2) state-space modeling/filtering approaches, (3) rule 

based-approaches, and (4) combined approaches. 

 

Redundancy-based approaches can be further divided into to sub-categories: physical and 

analytical.  Physical redundancy-based approaches employ two or more identical sensors 

at a particular location, resulting in multiple coincident measurements.  These 

measurements can be directly compared.  If the measurements deviate significantly, then 

at least one of the measurements can be deemed erroneous.  However, it can be seen that 

if only one redundant sensor is used (two total sensors), then it is impossible to determine 

which measurement is erroneous; thus, it has been suggested (Mourad & Bertrand-
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Krajewski 2002) that at least two redundant sensors should be used.  Physical 

redundancy-based methods are quite accurate, but are of limited utility for environmental 

sensors for two reasons.  First, because many environmental systems of interest are quite 

large, many sensors are required to achieve spatially dense measurements and sensor cost 

may prohibit deployment of redundant sensors.  This is further exacerbated by the 

expense of certain sensors.  For example, one sensor deployed in the WATERS Network 

Corpus Christi Bay testbed, by the Shoreline Environmental Research Facility (SERF), 

the acoustic Doppler current profiler (ADCP), has a unit cost of around $10,000.  Second, 

environmental sensors are often deployed in areas with limited power supplies, so 

powering redundant sensors may not be possible.  For example, SERF operates several 

offshore sensor platforms, which must generate all the energy used by the attached 

sensors from either wind turbines or solar arrays.   

 

Analytical redundancy-based methods remove the burden of operating redundant sensors.  

Instead, a model of the sensor data stream is used to simulate a redundant sensor.  The 

classification of a measurement as anomalous is based on the difference between the 

model prediction and the sensor measurement.  Early work on such methods (e.g. 

Upadhyaya et al. 1990, Belle et al. 1983) employed statistical time series models (Box & 

Jenkins 1970) to predict the next measurement in the sensor data stream, using historical 

values.  More recently, other modeling approaches, such as artificial neural networks 

(ANNs), have been suggested (Nairac et al. 1999, Fantoni & Mazzola 1996, Silvestri et 

al. 1994).  These methods were designed for use in manufacturing/power plants, and the 

only researchers to have suggested a method of threshold selection (Belle et al. 1983) for 
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classifying data as anomalous/non-anomalous required detailed process knowledge that is 

not generally available for natural systems.  Krajewski and Krajewski (1989) present an 

analytical redundancy method for streamflow data that employs model error standard 

deviations to set the threshold.  This method, however, relies on a physically-based real-

time model of the natural system—a tool which may not always be readily available. 

 

Bayesian filtering approaches operate similarly to analytical redundancy methods except 

that they use Bayesian filtering to determine the likelihood of a particular measurement, 

given all previous measurements in the sensor data stream.  Filtering-based error 

detection has been used most widely in robotics for detecting errors in onboard sensors 

(Nicholson & Brady 1994, Goel et al. 2000), though Lerner et al. (2000) also 

demonstrates a filtering error detection method using a hypothetical process control case 

study. 

 

Rule-based approaches use knowledge regarding correct sensor operation and likely data 

sequences to indicate data that may be erroneous.  Sensor-related knowledge includes 

detection limits of the sensor, known failure responses (e.g. unavailable measurements), 

and maintenance intervals.  Data sequence knowledge includes process variable range 

(e.g. jet engine speeds vary from 0 rpm to a defined maximum rpm), process variable 

gradient (e.g. due to rotational mass, jet engines cannot accelerate/decelerate faster than a 

particular rate), and correlated data (e.g. fuel consumption increases with engine speed).  

From knowledge such as this, rules about properly operating sensors can be made; thus, 

data errors can be determined by citing violations of these rules.  For example, 
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association rule-based decision making (Depold et al. 2003) and fuzzy sets 

(Ananthanarayanan & Holbert 2004) have been presented as methods for detecting 

erroneous data from sensors in electric power generation plants, and Bayesian belief 

networks (Mehranbod 2003) have been presented as methods for detecting errors in 

chemical manufacturing sensor data.  In addition to being able to identify erroneous 

measurements, these methods are often able to determine the cause of the erroneous 

measurements and sometimes suggest remedial actions (Ramanathan et al. 2006).  

However, if rules cannot be made regarding correct sensor or process behavior, these 

methods are infeasible.  Furthermore, since no model of the processes being measured is 

used, estimates of the erroneous data values cannot be suggested. 

 

Due to the various strengths and weaknesses of the different categories of methods 

described above, some researchers have suggested approaches that combine more than 

one category of method.  Bertrand-Krajewski et al. (2003) and Hodge and Austin (2004) 

provide good surveys of these approaches. 

 

Many of the techniques described above were designed to operate in controlled 

environments, such as manufacturing/power plants or machinery, where sensors are 

measuring process variables that are likely to be within a predefined range.  In this 

research, however, the sensors are located in the natural environment, measuring very 

unpredictable process variables for which a predefined range is not known a priori.   
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Chapter 5 develops a new analytical redundancy methodology for anomaly detection in 

environmental streaming data that employs a data-driven autoregressive model of each 

sensor data stream.  For illustration, this methodology is applied, using several different 

data-driven modeling methods, to the case of identifying erroneous windspeed 

measurements caused by transmission faults within the SERF sensor network.  The 

results from the different modeling methods are compared based on their ability to 

quickly and reliably identify erroneous measurements. 

 

Chapter 6 develops two methods for anomaly detection via Bayesian filtering, which, 

unlike the method presented in Chapter 5 consider several data streams at once using all 

of the streams concurrently to perform coupled anomaly detection.  These methods 

employ a dynamic Bayesian network (DBN) to model the environmental system being 

monitored by the environmental sensors which are solved using an appropriate filtering 

algorithm.  For illustration, these methods are applied, using DBNs of varying 

complexity, to the case of identifying both synthetic anomalies and known anomalies in 

eight data streams from the SERF sensor network.  The results from the different 

anomaly detection methods and DBNs are compared based on their ability to quickly and 

reliably identify the synthetic anomalies.  The performance of the Bayesian filtering 

methods is also compared with the performance of the autoregressive anomaly detection 

method described in Chapter 5. 
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Chapter 4:  Upscaling Models of Solute Transport in Porous Media through Genetic 

Programming 

This case study develops an upscaling methodology using genetic programming (GP), a 

promising new tool for modeling complex phenomena whose physics are not well 

defined (Babovic & Abbott 1997a).  For illustration, this methodology is applied to the 

case of developing vertically averaged models of the transport of a non-reactive solute in 

confined stratified aquifers.  The results are compared with models developed through the 

method of moments (MoM), a traditional upscaling technique that is well suited for this 

transport configuration (Güven et al. 1984). 

 

4.1 Methods 

The upscaling methodology developed in this study takes advantage of GP’s ability to 

model complex phenomena.  This section includes a description of how GP was 

performed, followed by the mathematical formulation of the upscaling problem addressed 

in this study. 

 

4.1.1 Genetic Programming 

As discussed in Chapter 2, GP is a domain independent method that creates a model 

based on input data, by searching the space of possible models.  This search uses 

operations inspired by natural evolution, which allow GP to cultivate a diverse set of 

approaches to solving the problem (Banzhaf et al. 1998).  Genetic programming has 

shown success in many applications (e.g. Koza et al. 1999, Savic et al. 1999). Babovic 
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and Abbott (1997b) present four applications of GP in the field of hydrology.  The results 

of these applications illustrate the abilities of GP to: (1) model “emergent phenomena,” 

(2) find models of data that match human derived models, (3) develop models of 

phenomena that are of higher quality than human derived models, and (4) find models of 

complex phenomena that are equally accurate, yet simpler to solve, than many human 

derived models. 

 

In this research GP will be used to perform symbolic regression to induce upscaled 

models of solute transport in porous media from data describing the upscaled process.  

Building differential equations via symbolic regression is difficult, because no general 

differential equation solver exists to evaluate the fitness of the candidate equations.  Thus, 

it is important to find a method of learning differential equations without requiring 

integration of each candidate differential equation in the population.  In this research, the 

upscaling problem is decomposed into a new problem that does not require the use of 

calculus to evaluate the objectives, as described in the next section. 

 

4.1.2 Mathematical Formulation 

Because data regarding the target phenomenon is presented to ALP as a list of examples 

containing several descriptive attributes and the observed response of the system, and 

because it is necessary for the resulting upscaled models to be easily implemented, in this 

study, the upscaling problem was reduced to a problem of calculating upscaled solute 

fluxes.  The mathematical formulation starts with the ADE, as it is assumed that this 
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model is valid for continuum-scale solute transport.  Using the summation convention for 

repeated indices, the ADE equation can be expressed as: 
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where C is the continuum-scale solute concentration, t is the time, xi is the Cartesian 

position vector, ui is the pore water velocity vector, and Di,j is the dispersion tensor.  This 

equation can also be expressed in terms of fluxes as: 
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where AJ  is the solute flux due to continuum-scale advection, DJ  is the solute flux due 

to continuum-scale dispersion, and TJ  is the total continuum-scale solute flux. By 

employing spatial filtering, as shown by Beckie (1998), Equation 4.2 can be upscaled to 

the block-scale equation: 
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where the overbar indicates a spatially filtered quantity equivalent to the convolution 

integral of the continuum-scale quantity multiplied by a filtering function.  Since volume 

averaging is a form of spatial filtering, the filtered terms can be thought of as block-scale 

averages (Nitsche & Brenner 1989, Beckie et al. 1996).  With some algebra, the block-

scale total solute flux can be divided such that: 
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where CuJ i
A = is the solute flux due to block-scale advection, and NAJ  is the remaining 

non-advective solute flux .  A similar decomposition of the block averaged flux was used 

by Efendiev et al. (2000).  Unlike the block-scale advective flux, this latter term contains 
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sub-grid closure quantities, and thus cannot be easily modeled at the block-scale.  

However, by collecting data regarding the block-scale non-advective flux, ALP can be 

used to develop models of this flux in terms of other block-scale parameters, which will 

allow the solution of Equation 4.3.  Thus, the upscaling problem is reduced to the 

problem of finding a model for the block-scale non-advective flux in terms of resolvable 

block-scale quantities, and ALP does not have to search the space of PDEs. 

 

Data describing the block-scale non-advective flux can be generated using two numerical 

grids: (1) a highly resolved grid and (2) a coarse grid representing the block-scale.  The 

ADE is solved numerically on the fine grid, while the coarse grid is used for evaluating 

block-averaged parameters throughout the simulation. Block-scale parameters for each 

grid location are calculated by averaging the fine-scale parameters over the entire block, 

or in the case of vector quantities, such as the non-advective flux, over the appropriate 

block surface for each vector component.  

 

4.2 Case Study 

This case study presents the development of vertically averaged models of the transport 

of non-reactive solutes in two-dimensional, confined, perfectly stratified aquifers (i.e. 

vertically varying horizontal flow parallel to the layers).  This idealized transport system 

was selected to allow comparison of the GP-derived vertically averaged equations with 

those derived using the method of moments (MoM) (Taylor 1953, Aris 1956, Güven et al. 

1984, Kitanidis 1992), a well accepted approach for deriving vertically averaged 

equations for perfectly stratified aquifers.  This section will proceed by first describing 
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the upscaled transport equations that can be derived using the MoM.  Then, two test cases 

using different synthetically generated velocity fields will be defined.  Next, 

mathematical simplifications to Equations 4.3 and 4.4, which are made possible by 

vertically averaging two-dimensional, confined, perfectly stratified aquifers, will be 

discussed. Finally, the generation of input data for ALP will be explained. 

 

4.2.1 Method of Moments 

The MoM aims to describe the solute plume at any point in time, in terms of its spatial 

moments.  Mathematical expressions for the solute distribution’s moments as functions of 

time can be derived from the ADE. For the case of transport in a laminar shear flow 

(equivalent to the case of horizontal flow in a perfectly stratified aquifer), Aris (1956) 

demonstrated that the MoM could be used to derive models for the temporal evolution of 

the spatial moments of the cross-sectionally averaged concentration. Commonly, only the 

zeroth, first, and second spatial moments are considered, as the models for the higher 

order moments are more cumbersome.  The zeroth moment indicates the total solute mass 

in the system, the first moment indicates the mean position of the plume, and the second 

moment indicates the plume spread.  The resulting upscaled model of transport has the 

same form as the ADE, except that an effective velocity vector calculated from the first 

moment replaces the velocity vector, and the dispersion tensor is replaced with a time 

dependent macrodispersion tensor calculated via the second moment.  Thus, the MoM 

model of the non-advective flux can be expressed as: 
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where )(tDeff
i is the macrodispersion coefficient.  It can be seen that the assumption of 

locally Fickian macrodispersion (i.e. the assumption that plume spreading due to 

hydraulic conductivity variability can be effectively modeled as a random process) is 

inherent in this model.  The resulting MoM model describes the solute distribution at any 

time as Gaussian, with the same mean and variance as the observed plume.  

 

Because this type of model employs the assumption of locally Fickian macrodispersion, it 

is only valid when the plume has spread sufficiently, such that all velocities are sampled 

with the same frequency with which they appear in space. Furthermore, this method 

requires assumptions regarding the continuum-scale velocity field in order to close the 

equations for the spatial moments of the solute distribution.  One common assumption is 

that of a periodic medium (Kitanidis 1992, Wood et al. 2003); in particular, Aris (1956) 

showed that for confined, perfectly stratified aquifers with flow parallel to the layers, 

such as those considered in this study, it is possible to rigorously derive the effective 

velocity and macrodispersion terms. 

 

4.2.2 Synthetic Aquifers 

The process of defining the properties of the synthetic aquifers for this study was guided 

by the desire to facilitate comparison with the MoM and to maximize the generalizability 

of the aquifers.  Assuming a two-dimensional system where flow is parallel to the x-axis, 

and the z-axis represents the aquifer depth, any arbitrary velocity profile can be 

discretized into small sub-layers of constant velocity. Because of this, and because this 

study is confined to vertically averaged blocks, a two-dimensional computational grid is 
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necessary to fully resolve the fine scale concentration distribution, whereas the aquifer’s 

vertically averaged counterpart can be resolved with a one-dimensional computational 

grid.  The two-dimensional representation will hereafter be referred to as the fine-scale 

representation.  The fine and block-scale representations are illustrated in Figure 4.1.  In 

order to facilitate comparison with the MoM, the following two velocity distributions 

were considered: 
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where h is the aquifer depth.  The flow distributions described by Equations 4.6a and 4.6b 

will hereafter be referred to as parabolic and cos-cos, respectively.  Two distributions 

were chosen in order to demonstrate the generality of the derived upscaled models to 

solute transported by different velocity distributions.  The parabolic distribution was 

selected because many MoM studies address transport by this distribution (e.g. Aris 1956, 

Güven et al. 1984), while the cos-cos distribution was selected because it varies more 

sharply than the parabolic distribution.  These velocity distributions were applied by 

creating 100-layer synthetic aquifers and defining the flow rate in each layer, such that 

the total mass of water passing through the layer was equivalent to the total mass of water 

that would pass through the same discretized region using Equations 4.6a or 4.6b.  The 

number of layers for the aquifers was selected in order to minimize the differences 

between the discretized distribution of the aquifers and the continuous distribution 

functions, thus facilitating comparisons with the MoM upscaled equations, since these 

equations use continuous velocity distributions.  The depth of the aquifers was chosen to 
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be 1 m.  The transverse dispersion coefficient within the aquifers was specified to be 0.01 

m/s2.  Since it has been shown that the longitudinal spreading of the plume due to aquifer 

heterogeneity is significantly larger than that due to continuum-scale dispersion (Gelhar 

et al.1979), the latter was ignored.  The exact values of these parameters, however, are 

unimportant, because, as will be discussed shortly, dimensionless parameters are used to 

describe the aquifers.  Thus, the numerical results of the transport simulation can be 

scaled to represent a large number of aquifer geometries and transverse dispersion 

conditions. 

 

4.2.3 Simplifying the Numerical Formulation 

The use of vertically averaged representations of two-dimensional aquifers allows two 

simplifications to be made to Equations 4.3 and 4.4. First, the subscripts (i) can be 

dropped from the vector quantities (e.g. NA
iJ ) because the vectors have only one 

Figure 4.1: Schematic of a two-dimensional perfectly stratified aquifer indicating 

both the fine and block-scale computational grids, as well as the fine-scale velocity 

distribution. 
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component (i.e. x-directional).  Thus, Equations 4.3 and 4.4 can be combined and 

simplified to:  
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The second simplification involves converting from a Cartesian to a Lagrangian 

coordinate system that moves at the vertically averaged pore water velocity.  In this 

coordinate system, the position vector is tuxxR −= , and Equation 4.7 becomes: 
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This simplification allows for convenient implementation of the upscaled solute transport 

model, because the block-scale advective flux is implicitly accounted for by the 

Lagrangian coordinate transformation.  Therefore, the block-scale solute concentration 

can be calculated using Equation 4.8, where NAJ is modeled by ALP. 

 

Since dimensionless training data are used to implicitly constrain ALP to dimensionally 

consistent equations, the following transformations were used to convert dimensional 

data into dimensionless data: 
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where C0 is the input concentration, and DT is the transverse dispersion coefficient. 

 

4.2.4 Generation of Training Data 

In order for ALP to develop models of the block-scale non-advective flux, it is necessary 

to provide a set of training examples that contain block-scale descriptive attributes and 

the resulting block-scale non-advective flux observed in the aquifer being studied.  

Training examples were collected from the aquifer with the parabolic flow distribution 

for a pulse input of solute.  The time evolution of the continuum-scale solute distribution 

was solved using a numerical finite difference solution to the ADE, which employed 

operator splitting to separate the modeling of the advective and dispersive processes.  A 

third order explicit total variation diminishing (TVD) method (Leonard 1988) was used to 

solve the advection term, while an implicit method was used for the dispersion term.  

This method for solving the ADE was selected to minimize prediction errors of the 

numerical solution to the ADE and, thus, to minimize errors in the training data.  The 

fine-scale solution used a highly refined computational grid to minimize errors in the 

training data.  The fine-scale solution used a highly refined computational grid to 

minimize numerical errors.  The block-scale computational grid was defined such that 

each block spanned the entire depth of the aquifer and had the same length as the fine-

scale grid. 

 

The descriptive attributes selected to describe the block-scale non-advective flux at the 

block interface consisted of the block-scale concentration (φ ) at the upstream and 

downstream block centers; the position of observed block interface (ξ); the time of 
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observation (τ); the block-scale concentration gradient ( ξφ dd ) at the block interface, as 

well as at three upstream locations; the second spatial derivative of the block-scale 

concentration ( 22 ξφ dd ) at the block interface and at three upstream locations; and the 

mixed space/time derivative of the block-scale concentration ( τξφ ddd 2 ) at the block 

interface and at three upstream locations.  The values of the block-scale derivatives were 

estimated using discrete approximations.  Unless otherwise indicated, these attributes 

were recorded at the block interfaces.  These attributes were selected because they 

appeared in upscaled transport equations derived using traditional methods (Gelhar & 

Axness 1983, Beckie 1998, Efendiev et al. 2000). Because there are many block 

interfaces and time steps in the numerical simulation of the fine-scale transport model, it 

was necessary to select only a subset of the salient examples for training.  Examples from 

a particular block interface were considered salient only if the solute concentration at 

some point within a five-block neighborhood surrounding the interface was non-zero.  

The examples used to train ALP were selected at random from the set of salient examples 

that were recorded during every tenth time step of the simulation. 

 

4.2.5 Parameterization of ALP 

ALP requires many user-selected parameters to define the search for good models of the 

training examples, including objective, functional set, population size, and number of 

training epochs.  Unfortunately, there is little theoretical work to direct the selection of 

these parameters, and thus, a large number of experiments were performed with different 

values in order to find good solutions.  
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The objective parameter defines the criteria by which to evaluate the quality of the 

derived equations for predicting the target attribute.  ALP implements several types of 

objectives, including both goodness-of-fit (e.g. sum of squared errors) and parsimony (e.g. 

equation length) objectives; furthermore, ALP permits multi-objective searches.  In this 

study, the objectives were selected to be the correlation coefficient (r2) between the 

candidate equation and the training data and the equation length.  The r2 statistic indicates 

the degree to which the relationship between two variables is linear; thus, it is insensitive 

to relational constants, such as scale or shift (Devore 1995).  The r2 statistic was selected 

for this latter property because it does not require ALP to find the correct value of the 

relational constants, a task that is generally difficult for GP (Koza 1992).  Scale constants 

refer to constants that are multiplied to or divided from a function, while shift constants 

refer to constants that are added to or subtracted from a function.  When using the r2 

objective, it is necessary to determine both the scale and shift constants a posteriori.  In 

this research, the scale and shift parameters were determined by performing linear 

regression of the data pairs composed from the observed non-advective flux in the 

training data and the model prediction of this flux.  The slope and y-intercept of this line 

are the scale and shift parameters, respectively.  The equation length was selected to 

encourage ALP to explore equations of varying complexity and to control bloat. Because 

ALP uses a multi-objective search, controlling bloat in this manner will not eliminate 

clauses that improve the model’s r2 value. 
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The functional set defines the mathematical operators that can be used to relate the 

attributes to the target value.  Several functional sets were evaluated, including the set of 

all arithmetic operators (e.g. x+y, where x and y are attributes), the set of all arithmetic 

and geometric operators (e.g. sin(x), where x is an attribute), and the set of all arithmetic 

operators and the exponential function (i.e. ex, where x is an attribute).  It was observed 

that the latter two functional sets found many large equations that fit the data well and 

consisted of long chains of sine/cosine terms or exponential functions, respectively.  It is 

well known that any continuous function can be represented by an infinite series of 

sine/cosine or exponential terms through the formation of Fourier or Taylor series. 

Because the exponential operator is easier to simplify than the set of geometric operators, 

the functional set including both arithmetic operators and the exponential function was 

used in order to retain the expressivity facilitated by exponential functions without 

overwhelming the GP results with difficult to analyze solutions. 

  

The population size specifies how many candidate equations participate in the search for 

good equations.  Larger populations contain a greater variety of clause building blocks 

from which to derive new candidate equations; however, larger populations also increase 

the time it takes to evaluate one epoch of GP.  Therefore, it is necessary to have a 

population that is large enough to represent an adequate number of discrete clauses, yet 

small enough to allow a reasonable computation time.  According to the guideline 

presented by Sastry et al. (2003) the population would have to contain over 11 million 

individuals in order to guarantee a good supply of building blocks in this research.  

However, preliminary results indicated that a population size of 1000 individuals was 
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sufficient to produce good results. For this reason, a population size of 1000 candidate 

equations was chosen. 

 

The number of epochs specifies how many iterations of the genetic operations the 

population of candidate equations is subjected to.  Langdon and Poli (2002) showed that 

more epochs result in a larger number of extraneous clauses in each candidate equation in 

the final epoch.  Therefore, it is common to use only a few training epochs but perform 

GP many times (Koza 1992).  In this paper, each run of ALP will be referred to as an 

experiment.  After all the experiments have been completed, the results from each 

experiment are merged, eliminating all the results that are dominated by results from 

different experiments, resulting in a “front” of non-dominated (and thus Pareto optimal) 

equations for modeling the training data.  The candidate equations are then evaluated for 

semantic meaning, as well as for goodness of fit.  In this study, hundreds of experiments 

were performed, during which the candidates were evolved for 50 epochs.  

 

In addition to these parameters, a crossover rate of 0.8, a mutation rate of 0.1, and binary 

tournament selection were used.  These values reflect those recommended by the 

developers of the ALP system from extensive trials on many different functions (e.g. 

Keijer et al. 2001, Babovic et al. 2001, Keijzer 2002, Keijzer & Cattolico 2002). 

 

4.3 Results 

The results from many experiments of ALP compose a Pareto front of non-dominated 

solutions to the GP task.  In this case, the front consisted of many equations with nearly 
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equivalent r2 values but widely varying lengths.  In general, longer equations tended to 

have slightly higher r2 values.  Analysis of these models, however, showed that the 

majority of the equations along the front contained the same clause, along with many 

irrelevant or nearly-irrelevant clauses that could be removed without significantly 

reducing the ability of the equations to fit the training data.  These extraneous clauses 

were considered to be the result of GP bloat and, thus, were removed from the equations, 

resulting in a consensus on a final model for the data. 

 

Three characteristic results from along the Pareto front were: 
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where the subscript i indicates the ith block interface.  These results fit the training data 

with r2 values of 0.95, 0.97, and 0.95, respectively; thus, the models are of similar quality, 

but they differ greatly with regard to semantics and complexity.  Equation 4.10a only 

contains three parameters, all of which contribute significantly to its quality.  However, it 

is interesting that the model only includes the dimensionless concentration upstream of 

the block face.  If this parameter is replaced with the dimensionless concentration at the 

block face (calculated as the average of the concentration upstream and downstream of 

the block face), the resulting equation becomes: 
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which also has an r2 value of 0.95.  Thus, the replacement of the upstream concentration 

with the block face centered concentration does not improve (or reduce) the quality of the 

model’s fit with the non-advective flux data, but it does improve the performance of this 

model for prediction of the block-scale solute distribution.  The improvement in the 

solute distribution prediction occurs because, at the downstream edge of a solute plume, 

the model shown in Equation 4.10a will predict zero solute flux, whereas the model 

shown in Equation 4.11 will predict a finite non-advective solute flux, the latter case 

being the physically plausible model response.  This discrepancy in flux prediction 

between the two models occurs because, at the downstream edge of the plume (i.e. at 

position i), the concentration a bit further downstream (i.e. at position 2/ξ∆+i ) is zero, 

whereas the concentration just upstream (i.e. at position 2/ξ∆−i ) is non-zero. 

 

Equation 4.10b can also be reduced to Equation 4.11.  Recall that the exponential 

function is equivalent to the Maclaurin series: 
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Since the magnitude of the product within the exponentials in Equation 4.10b is always 

less than 1, the terms in the series get smaller as ∞→n ; therefore, all but the first two 

terms of the series can be ignored.  If this procedure is followed for both exponential 

functions, the resulting model is a linear function of Equation 4.10a.  Since the r2 statistic 

is insensitive to scale and shift parameters, the r2 value of the approximation to Equation 

4.10b is equal to that of Equation 4.10a: namely, 0.95.  In return for the reduction in 
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performance caused by this approximation, there is a substantial increase in both 

semantic meaning and ease of implementation of the model. 

 

Equation 4.10c can also be reduced to Equation 4.11 through evaluation of its clauses.  

Equation 4.10c can be divided into four clauses such that: 

4321 /)( clauseclauseclauseclauseNA
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Using the training data, the minimum, mean, and maximum values of clause1 can be 

calculated to be 2.705, 2.718, and 2.720, respectively. Because the clause has a small 

range, it can be replaced by its mean with little loss of generality.  The same is true for 

clause3 and clause4.  Since clause2 is Equation 4.11, it can be seen that the approximation 

of Equation 4.10c is a linear function of Equation 4.11; thus, the r2 value is 0.95, which is 

equivalent to the r2 value of Equation 4.10c.  Therefore, there is no measurable predictive 

ability lost by using Equation 4.11 to approximate Equation 4.10c. 

 

In the preceding discussion, it was demonstrated that different length models from the set 

of Pareto optimal solutions could be simplified to the same model without a significant 

loss of predictive ability.  However, if the longer models have a higher r2 value, why 

were they not preferred? The answer is twofold. First, there is a precedent in learning 

theory to prefer simpler models to more complex models with similar predictive abilities 

(i.e. Occam’s razor) (Duda et al. 2001).  Second, the longer models are often too complex 

to be implemented numerically. Furthermore, a t-test with a 95% significance level 

showed that the difference in r2 values between the longer models and Equation 4.11 is 

insignificant.  Note that due to space constraints, only a few of the shorter equations were 
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discussed; the same techniques can be applied to the longer equations along the Pareto 

front, often resulting in Equation 4.11.  This consensus between models strengthens the 

claim that Equation 4.11 best models the non-advective flux.  

 

It should now be clear that many of the Pareto-optimal results of the GP task can be 

reduced to one common equation shown in Equation 4.11.  This model will hereafter be 

referred to as the sub-grid advective (SGA) model for reasons that will become clear 

shortly.  The SGA model is strongly correlated with the non-advective solute flux from a 

pulse input of solute in both the aquifer with the parabolic velocity distribution and the 

aquifer with the cos-cos velocity distribution, with r2 values of 0.95 and 0.93, 

respectively, whereas the MoM model (Equation 4.5) is only weakly correlated with the 

observed non-advective flux, indicated by r2 values for the parabolic and cos-cos velocity 

distributions of 0.1 and 0.24, respectively.  This result enables two conclusions. First, 

since flux data from the cos-cos velocity distribution was not used for training, this result 

indicates that the SGA model generalizes to different flow conditions than those used for 

training.  This generality suggests that the SGA model describes the mechanism of 

macrodispersion, rather than merely being a concise representation of the training data.  

Second, because a strong correlation exists between the SGA model and the observed 

non-advective flux, but not between the MoM model and the observed non-advective flux, 

this result indicates that the SGA model is a better predictor of the observed non-

advective flux than the MoM model.  This result may appear surprising because the MoM 

model should be correct at late times, when the assumption of Fickian macrodispersion is 

valid.  However, the r2 metric considers the model residuals holistically with respect to 
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time, and the model residuals are more likely to be large in magnitude at early times than 

at later times because the magnitude of the non-advective flux is larger at early times.  

Therefore, the r2 metric is biased towards early time behavior.  Since r2 was used as the 

goodness-of-fit metric, this latter conclusion suggests why ALP did not create any 

models similar to the MoM model.  

  

In order to determine the scale and shift constants, linear regression between the SGA 

model (converted back into dimensional form) and the observed non-advective flux was 

performed.  This regression indicated approximate scale and shift parameters of 1 and 0, 

respectively, resulting in the equation: 

t
xCJ RNA =  (4.14)

where xR is the position in the Lagrangian coordinate system.  This model describes the 

non-advective flux of solute in the aquifer with the parabolic flow profile.  The zero value 

of the shift parameter is expected, because a non-zero shift parameter would indicate that 

a significant component of the non-advective flux could not be modeled by the SGA 

model.  Equations 4.8 and 4.14 can be solved numerically to predict the time evolution of 

a pulse input of solute in the aquifer with the parabolic flow profile at times greater than 

zero (since time appears in the denominator). 

 

Figure 4.2 compares the performance of the SGA upscaled model with the MoM 

upscaled model for predicting the evolution of the solute plume. Because the SGA model 

is not valid at very early times, the fine-scale model was used to predict the plume 

evolution for the first 30 time steps of the simulation (until τ = 0.03), before the SGA and 
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MoM models took over the prediction.  It can be seen that, at early times, the SGA model 

more closely approximates the plume shape, whereas at later times, the MoM model 

produces a more accurate result.  However, it is important to note the y-axis scale when 

comparing the two predictions, because the maximum absolute error between the MoM 

model and the fine-scale model is much larger than the maximum absolute error between 

the SGA model and the fine-scale model, as depicted in case 0 of Figure 4.3.  This latter 

result may be misleading because the MoM model was derived such that the error 

between the predicted and observed values of the first two spatial moments of the plume 

is minimized, while the SGA model (Equation 4.11) was developed with the goal of 

minimizing errors.  Thus, a comparison that invokes absolute errors will be biased 

towards the SGA model, while a comparison based on moments will be biased towards 

Figure 4.2: Comparison of the MoM and SGA upscaled models for predicting the 

vertically averaged time evolution of a pulse input in the synthetic aquifer with 

parabolic flow. 
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the MoM model.  However, a comparison of the time evolution of the first two moments, 

calculated by the SGA and MoM models, to the first two moments of the plume, 

calculated using the ADE, indicates that both the SGA and MoM capture the time 

evolution of the zeroth, first and second spatial moments well with average errors of less 

than one-half percent.  Therefore, in our numerical experiment, the two models perform 

equally well when compared via spatial moments.  

 

Figure 4.3: Comparison of the maximum absolute errors between ALP derived 

upscaled models (SGA, H1, H1s, and H2) and the MoM upscaled model. Cases 0 

and 1 refer to the transport of a pulse input in the synthetic aquifer with parabolic 

flow, case 1s refers to the transport of a finite width input in the synthetic aquifer 

with parabolic flow, and case 2 refers to the transport of a pulse input in the 

synthetic aquifer with cos-cos flow. 
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Analyzing the second term in the SGA illustrates that the block-scale non-advective flux 

can be attributed to solute advection that occurs below the block-scale: 

uuu
t

tux
t

xR ′=−=
−

=  (4.15) 

Equation 4.15 relates the position of the solute to u′ , the deviation (from the mean 

velocity) of the unresolved velocity.  Thus, the SGA model approximates the solute 

transported by unresolved velocity variations using block-scale resolvable parameters.  In 

fact, it can be shown that the SGA model is quite capable of reproducing the solute plume 

evolution of a pulse input in a perfectly stratified system with no transverse mixing. 

 

Figure 4.2 indicates that, at early times, the time evolution of the solute distribution in the 

aquifer appears purely advective, and that the time evolution of the plume at late times is 

well described by the MoM model.  However, at intermediate times, the solute plume 

behaves in a manner consistent with a combination of the pure advection and Fickian 

macrodispersion cases, where the influence of the SGA model decreases with time, and 

the influence of the MoM model increases with time.  Thus, a new model, which is a 

hybrid of the SGA and MoM models, is suggested: 
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where F(t) is a continuous function over all values of t and has a minimum value of zero 

that occurs at t=0 and a maximum value of 1 that occurs at very late time, and effD∞ is the 

asymptotic coefficient of macrodispersion suggested by the MoM.  The function F(t), 

which will hereafter be referred to as the mixing function, controls the influence of both 
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the SGA and MoM models over time, allowing the SGA model to dominate the behavior 

of the solute distribution at early times and allowing the MoM model to dominate its 

behavior at later times.  This model is consistent with a conceptual model of the transport 

process in which, at early times, insufficient solute has been exchanged between the 

layers, such that the process is similar to the pure advection process described by the 

SGA model.  As a larger quantity of solute samples more of the flow paths in the 

individual layers, a larger fraction of the transport process behaves in a manner consistent 

with Fickian macrodispersion; once sufficient time has passed for the average solute 

behavior to be consistent with having sampled all the flow paths, the process is well 

described by Fickian macrodispersion.  Equations 4.7 and 4.16 can be solved to predict 

the time evolution of a pulse input of solute in an aquifer at times greater than zero. 

 

In the discussion above, the mixing function F(t) was intentionally vaguely defined 

because the optimal function may vary depending on transport conditions.  In this 

research, a sigmoid function: 

( )
1

2exp1
−























 −−+= ba

h
D

ttF t  (4.17)

was chosen to demonstrate how the model described by Equation 4.16 performs on the 

aquifers considered in this study.  Note that in this equation, time is normalized by the 

transverse dispersivity and aquifer depth, resulting in an equation that generalizes to other 

aquifers with similar flow distributions but different depths and transverse dispersion 

coefficients.  The parameters for the sigmoid were chosen via a manual trial-and-error 

approach using visual inspection of the solute distribution shapes to guide the search.  
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Nevertheless, the upscaled models created performed well on a variety of transport 

conditions, including different initial conditions of the solute input into the aquifer with 

parabolic flow and different velocity distributions.  Since, as described previously, the 

SGA model is not valid at very early times, for the experiments described below, the 

fine-scale model was used to predict the plume evolution for the first 30 time steps ( τ ≤ 

0.03) of the simulation, after which the hybrid and MoM models took over the prediction.  

 

For the case of a pulse input into the aquifer with parabolic flow (which is equivalent to 

ALP’s training conditions), values of 0.3 and 0.01 were chosen for the sigmoid function 

parameters, a and b, respectively.  It can be seen in Figure 4.4 that the hybrid model with 

these parameter values, hereafter referred to as H1, performs better when compared to the 

MoM model.  At early times, model H1 preserves the favorable behavior of the SGA 

model, predicting the bimodal solute distribution with high accuracy.  At late times, 

model H1 retains the benefits of the MoM model, predicting a unimodal, nearly Gaussian 

plume.  At intermediate times, model H1 performs quite well at capturing the peak 

concentration and shape of plume’s leading edge.  It also does quite well at capturing the 

overall shape when compared to the MoM model. Furthermore, the maximum absolute 

concentration deviation between model H1’s prediction and the observed plume shape is 

less than that of either the SGA or MoM models alone, as illustrated in Figure 4.3.  

 

The predictive abilities of the upscaled model H1, however, are not restricted to the 

conditions on which it was developed.  Using superposition, this model can be extended 

to the cases of an instantaneous finite width input, a finite duration input, or even a 
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continuous input, by summing the effects of multiple pulse inputs each calculated with 

model H1. For example, Figure 4.5 shows the superior performance of the superposed H1 

model, hereafter referred to as H1s, for the case of an instantaneous input over a finite 

width of the aquifer with parabolic flow.  In particular, model H1s more accurately 

predicts the shape of the plume’s leading edge, as well as the peak concentration location, 

than the MoM model at all times.  Additionally, as shown in Figure 4.3, the maximum 

absolute error between model H1s and the observed plume shape is smaller than that of 

the MoM model alone.  Thus, though model H1 was developed for particular initial 

conditions, it generalizes well to other input conditions.  

 

Figure 4.4: Comparison of the MoM and H1 upscaled models for predicting the 

vertically averaged time evolution of a pulse input in the synthetic aquifer with 

parabolic flow. 



 77

Furthermore, the hybrid model can be adapted for use in the aquifer with cos-cos flow 

simply by changing the parameters a and b of the sigmoidal mixing function to 0.5 and 

0.0875, respectively.  These parameters were found using another trial-and-error fit.  A 

comparison of the performance of this adapted hybrid model, hereafter referred to as H2, 

with the MoM model, for predicting the time evolution of an instantaneous pulse input 

into the aquifer with cos-cos flow is shown in Figure 4.6.  Even for velocity distributions 

on which the SGA model was not developed, the hybrid model outperforms the MoM 

model in predicting the plume shapes, especially in capturing the shape of the plume’s 

leading edge, as well as in predicting the magnitude and location of the peak 

concentration, and in minimizing the maximum absolute error, as shown in Figure 4.3. 

 

Figure 4.5: Comparison of the MoM and H1s upscaled models in predicting the 

vertically averaged time evolution of an instantaneous finite width input of solute in 

the synthetic aquifer with parabolic flow. 



 78

The applicability of the general hybrid model to a range of initial conditions and velocity 

distributions suggests that this model does not serve simply as a surrogate for the 

observed data used to train it, but actually describes the processes that drive the solute’s 

macrodispersion. For that reason, it can be suggested that the behavior of the 

macrodispersion transitions from a process that manifests itself as advective at the block-

scale to a process that manifests itself as Fickian at the block-scale. Furthermore, since 

F(t) had to be re-parameterized for model H2, but not model H1s, this experiment 

suggests that the behavior of this transition is a function of the velocity field, rather than 

of the initial solute distribution.  This knowledge could be used to develop a relationship 

between the mixing function parameters and the velocity distribution, so that a trial-and-

error fitting procedure would no longer be necessary. 

Figure 4.6: Comparison of the MoM and H2 upscaled models for predicting the 

vertically averaged time evolution of a pulse input in the synthetic aquifer with cos-

cos flow. 



 79

 

4.4 Discussion 

The case study presented in this chapter illustrates several benefits of using GP as a 

research tool. First, GP can not only be used to accurately model training data, but also to 

produce mathematical models that researchers can understand, unlike other data-driven 

approaches to modeling (e.g. neural networks).  This representation facilitates the 

interpretation of model semantics, as was illustrated in the case study, when the ALP 

derived model was related to sub-grid advection. Furthermore, the representation of 

models as equations renders them capable of being modified to incorporate domain 

knowledge to improve applicability.  This is especially beneficial in the case of ill-

defined modeling tasks. For example, in the case study, ALP’s objective was to find a 

model that fit the non-advective flux data well using the r2 statistic.  However, 

groundwater researchers evaluate the quality of upscaled solute transport models based 

on their ability to predict the time evolution of plumes.  This latter objective is difficult to 

express mathematically and would require the solution of a PDE for each population 

member during each epoch.  This would require both an automated numerical 

implementation scheme and a long time to evaluate each training epoch.  Therefore, 

significant economy is realized by decomposing the problem and later reconstructing it 

from its constituent parts.  The reconstruction process is facilitated by the mathematical 

form of the GP models, which allowed the combination of the SGA model with a model 

of Fickian macrodispersion to improve late-time performance.  The mathematical 

representation of the GP derived models also facilitates the integration of these models 

into more complex modeling tasks. For example, ALP helped create a model of the 
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block-scale non-advective flux, which could then be integrated into a PDE describing the 

solute plume evolution. Finally, because researchers can interpret the mathematical 

equations produced by GP, these equations can be used to gain insight into the 

predominant processes that create the training data. For example, the case study shows 

how the GP search encouraged the development of a conceptual model of 

macrodispersion that transitions from a predominantly advective to a predominantly 

Fickian process. 

 

The results of the case study also provide some insight into how to approach upscaling 

solute transport models to multi-dimensional blocks using GP.  This task requires 

learning a model for a multi-dimensional vector quantity.  Therefore, ensuring that mass 

continuity is conserved will be more difficult than in the one-dimensional case presented 

here, and new objectives may be necessary to guide the GP search towards methods that 

conserve mass. Furthermore, a method should be sought to reduce the observed bias of 

the r2 metric for capturing early time behavior. 

 

4.5 Conclusion 

This case study presents promising initial results from a novel data-driven approach to 

upscaling solute transport models.  A methodology was developed such that the problem 

of upscaling models of solute transport from the fine-scale to the block-scale was reduced 

to finding a model of the block-scale non-advective flux.  To demonstrate this method, a 

case study was performed, in which vertically averaged models were developed for the 

transport of solute in perfectly stratified aquifers by flow parallel to the layers.  The many 
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Pareto optimal equations found by ALP were analyzed to discover a consensus equation 

that described the advection of solute by fine-scale velocity variations from the vertically 

averaged velocity that could be expressed entirely in terms of block-scale parameters.  

 

When this model was used to predict the time evolution of the solute distribution, the 

short-term predictions were of high quality, but this was not the case with the long-term 

predictions.  This result may be due to a bias in the ALP fitness function toward 

capturing early time behavior.  This model, however, was determined by the consensus of 

many searches to best capture the behavior of the non-advective flux, thus compelling the 

development of a new hybrid model of the non-advective flux that transitioned from an 

advective to a Fickian process.  This new hybrid model was shown to be applicable to a 

variety of initial conditions and flow distributions, rather than merely the conditions used 

to train GP, suggesting that the new hybrid model describes the mechanism of 

macrodispersion, rather than simply being a surrogate for the training data.  

 

Though the case study develops vertically-averaged models of solute transport under 

relatively simple flow conditions (i.e. 2-dimensional, steady state flow in a confined, 

perfectly stratified aquifer of infinite extent), the results presented in this study are 

promising.  Data-driven modeling using GP is a novel approach to the upscaling problem, 

and to our knowledge, no previous studies exist in which data-driven modeling 

techniques have been used to develop semantically meaningful upscaled solute transport 

models.  As demonstrated here, GP can be used as a tool to inspire researchers to develop 

novel solutions that may not be immediately obvious.  The success of the hybrid model 
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for predicting the evolution of the solute plume indicates that the GP upscaling 

methodology may also be successful for modeling more complex systems. Furthermore, 

the results of this case study provide insight into how to approach more complex 

transport conditions, as well as multi-dimensional blocks. 
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Chapter 5:  Real-Time Autoregressive Data-Driven Anomaly Detection in 

Streaming Environmental Data 

Models of environmental systems, such as the upscaled model developed in Chapter 4, 

require many parameters, including spatial properties, boundary and initial conditions, 

and process-related coefficients.  Unfortunately, for complex systems, the necessary 

information is often not readily available, thus requiring researchers to use 

approximations and best guesses.  The recent deployment of sensors into the environment 

provides an opportunity to use real-time data to parameterize these models.  This chapter 

develops an anomaly detection method that can be used for real-time quality control and 

analysis (QA/QC) in environmental streaming data.  This study develops a new real-time 

anomaly detection method that employs data-driven autoregressive models of the data 

stream and a prediction interval (PI) calculated from recent historical data to identify 

streaming data anomalies.  The method used to calculate the PI in this study accounts for 

uncertainty in the data and in the data-driven model’s parameters.  Data-driven time-

series models are employed instead of statistical time-series models, because they are 

simpler to develop and because they rapidly produce accurate short-forecast horizon 

predictions.  Data are classified as anomalous/non-anomalous based on whether or not 

they fall outside of the p% PI.  Thus, the method provides a principled framework for 

selecting a threshold.  This method does not require any pre-classified examples of data, 

scales well to large volumes of data, and allows for fast, incremental evaluation of data as 

it becomes available.  The following section describes this method in detail.  Next, it is 

tested through a case study, in which several different data-driven modeling techniques 

are used to identify erroneous measurements in a windspeed data stream from the Water 
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and Environmental Research Systems (WATERS) Network testbed at Corpus Christi Bay, 

Texas, provided by the Shoreline Environmental Research Facility (SERF) 

(http://www.serf.tamus.edu). Finally, the results of the different instantiations of the 

anomaly detection method are compared, and implications of the different modeling 

strategies are discussed. 

 

5.1 Methods 

This study proposes a new analytical redundancy method for anomaly detection that 

employs data-driven autoregressive models and their corresponding PIs for one-step-

ahead prediction of the expected value and range of plausible values for the next 

measurement, respectively.  The PIs are then used to delineate the boundary between 

anomalous and non-anomalous data.  Data-driven models are statistical models of the 

conditional distribution of the output variables conditioned on the input variables, such 

that the outputs of these models approximate the conditional averages of the target data 

(Bishop, 1995).  Data-driven models were chosen because they can efficiently model the 

time-series data collected by the sensors without a priori assumptions about the structure 

of relationships in the data. 

 

Autoregressive models are models that predict future measurements in a sensor data 

stream using only a specified set of previous measurements from the same sensor; they 

are used because they simplify the anomaly detection process in several ways.  First, 

using only previous values of the same data stream avoids complications caused by 

different sampling frequencies that can arise if a heterogeneous set of sensor data streams 
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is used.  Second, because of the frequency with which the SERF sensors go off-line, a 

significant number of gaps of undefined duration exist within each of the sensor data 

streams, and when comparing the streams, these gaps usually do not correspond with the 

same time periods.  Since time-series models require a defined set of input variables, it is 

unclear how to make predictions if one or more of the input variables is not available; 

thus, the use of autoregressive models reduces the number of predictions that cannot be 

made due to insufficient data.  Finally, since anomalous data cannot be expected to 

produce reasonable predictions when used as inputs into a model, if data from more than 

one sensor are used for prediction of a particular data stream, then anomalous data from 

different sensors must be detected in a particular order, such that all of the independent 

variables of a model have already been processed.  For example, if the model for data 

stream A requires the most recent measurements from data stream B, then anomaly 

detection must first be performed on data stream B, before it can be performed on data 

stream A.  The use of autoregressive models allows anomaly detection on several sensor 

data streams to take place rapidly and in an arbitrary order. 

 

The anomaly detection method considers the sensor data stream sequentially and in 

chronological order, classifying measurements one at a time as either anomalous or non-

anomalous.  A measurement will be classified as anomalous if it deviates significantly 

from the one-step-ahead prediction of its value calculated by the data-driven 

autoregressive model of the time series.  Significant deviation is defined using a constant 

threshold calculated via the PI.  The PI gives the range of plausible values that the next 

measurement can take, and the prediction level (p) indicates the expected frequency with 
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which measurements will actually fall in this range.  If it is assumed that the model 

residuals are normally distributed, then the 100(1-α)% PI can be calculated as: 

n
stx n

11*1,2/ +± −α  (5.1) 

 

where 1,2/ −ntα  is the 100(1 − α/2)th percentile of a Student's t-distribution with n-1 degrees 

of freedom, s is the standard deviation of the model residual, and n is the sample size 

used to calculate s.  This type of PI is a type of t-interval, because it relies on Student’s t-

distribution.  If the new measurement falls within the bounds of the PI, then the 

measurement is classified as non-anomalous; otherwise, it is classified as anomalous.  

Thus, the PI represents a threshold for acceptance or rejection of a data point.  The 

benefit of using the PI instead of an arbitrary threshold is that the prediction level guides 

the selection of the interval width. 

 

Once an anomalous data point is identified, two strategies for processing future data are 

compared.  The first strategy is to simply flag the data point as anomalous and proceed to 

calculate the PI for the next chronologically sequential data point using the newly 

classified anomalous data point as input to the data-driven model of the data stream.  The 

second strategy is to flag the data point as anomalous and proceed to calculate the PI for 

the next chronologically sequential data point, using the data-driven model prediction of 

the anomalous data point (instead of the newly classified anomalous data point itself) as 

an input to the data-driven model of the data stream.  The former strategy will hereafter 
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be referred to as anomaly detection (AD), while the latter strategy will be referred to as 

anomaly detection and mitigation (ADAM). 

 

This study compares four data-driven methods for creating the one-step-ahead prediction 

models: naïve, clustering, perceptron, and artificial neural network (ANN).  These 

methods were selected because they have all been demonstrated to successfully model 

different types of time-series data, as indicated below.  Data-driven methods like these 

develop models using sets of training examples.  Each example contains an input vector 

(i.e. the set of variables used to make a prediction) and an output vector (i.e. the set of 

desired model outputs).  Training these models involves fitting their parameters to 

minimize error on the training examples, without overfitting to the training data, which 

can lead to poor predictions.  Since the PI requires an estimate of the standard deviation 

of the modeling error, 10-fold cross-validation (Duda et al. 2001, Han & Kamber 2006) 

was used to train the models.  Ten-fold cross-validation divides the training set into 10 

non-intersecting subsets.  One subset is retained for model validation, while the 

remaining nine are used for model training.  This process is repeated once per fold so that 

every subset has been used for model validation.  The model error mean and standard 

deviation are then calculated as the average mean and standard deviation of prediction 

errors for the validation sets over all the folds.  This method has been shown to quantify 

error caused by uncertainty in both data measurement and model parameter estimation 

(Han & Kamber 2006).  The remainder of this section describes the implementation of 

the four data-driven modeling methods used in this study and indicates their suitability 

for modeling time-series data. 
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Naïve Predictor: The naïve predictor is a nearest-neighbor approach (Duda et al. 2001, 

Hastie et al. 2001) that bases its prediction of an unseen event on the response of the 

system to the most similar historical event and defines similarity in terms of temporal 

distance.  Thus, the naïve prediction of a measurement at time t+∆t is equal to the value 

of the measurement at time t.  Because this nearest neighbor approach uses temporal 

proximity, and because time-series data is inherently chronologically ordered, this 

approach, unlike many nearest neighbor approaches, scales well to large quantities of 

data.  Amenu et al. (2007) demonstrated the utility of this method for modeling stream 

flow time-series data. 

 

Clustering Predictor: The clustering predictor is slightly more sophisticated than the 

naïve method because, while it also predicts the value of an unseen event based on the 

observed responses of similar events, it defines similarity by mapping each measurement 

to a region of input space (i.e. the coordinate system defined by the set of input variables).  

It then partitions the input space into local regions (clusters) based on the training data 

and predicts the system response from each cluster to be the mean of the training data 

target values that mapped to each cluster.  The k-means clustering algorithm (Duda et al. 

2001, Hastie et al. 2001, Han & Kamber 2006) was used because it scales well to large 

quantities of data (Schütze & Silverstein 1997).  The number of clusters was specified 

using within-cluster scatter (Hastie et al. 2001), which indicates the similarity of the 

points to their assigned cluster center.  This method of determining the number of clusters 

is costly, but since it only has to be performed once, it does not significantly affect the 
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utility of the clustering predictor for real-time applications.  Vasquez and Fraichard 

(2004) demonstrated this method for predicting time-series data from robotic optical 

sensors. 

 

Perceptron Predictor: The perceptron model (Bishop 1995) predicts the response of a 

system (y) to be a linear combination of the input variables ( xr ) describing the system 

state through the transform: 

bxwy T +⋅=
rr  (5.2) 

where wr  is a weight vector that defines the relationship between xr  and y , and b is a 

constant.  The weight vector wr  is learned iteratively by applying a small correction to 

each element iw  in the weight vector proportional to both the perceptron’s error on a 

training pattern and the product ii xw , where the constant of proportionality is called the 

learning rate, and the constant b is learned in a similar manner.  This learning algorithm, 

called the “perceptron learning rule” (Rosenblatt 1958), traverses the error surface to find 

the point where the model error on the training set is minimized; thus, the perceptron 

performs a linear least-squares regression of the training data.  In this study, the learning 

rate is selected using a trial-and-error approach.  The perceptron model has well 

documented abilities to predict time-series data (e.g. Bishop 1995). 

 

Artificial Neural Network Predictor: Artificial neural networks (Bishop 1995, Duda et al. 

2001, Hastie et al. 2001) are networks of perceptron-like nodes (i.e. the output of each 

node is a non-linear function of the weighted sum of the node inputs) that create models 

of a system state using non-linear combinations of the input variables.  The ANN 
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considered in this study is a feed-forward network that is trained using the standard 

backpropagation algorithm with gradient descent (Rummelhart et al. 1986).  Training 

was terminated after a fixed number of training epochs were completed or when further 

training caused a decrease in the model’s performance on a testing set (Bishop 1995, 

Hastie et al. 2001).  This latter condition discourages overtraining of the network.  ANNs 

require that a learning rate, number of hidden layers, number of nodes in each hidden 

layer, and maximum number of training epochs be specified.  These values were selected 

using a trial and error approach (Bishop 1995, Hecht-Nielsen 1990).  The ability of 

ANNs to model time-series data is also well documented (e.g. Bishop 1995). 

 

5.2 Case Study 

To demonstrate the efficacy of the anomaly detection methods developed in this study for 

data QA/QC, it was applied to a windspeed sensor data stream from Corpus Christi Bay.  

The sensor is an R.M. Young model 05106 marine wind monitor, which collects 

windspeed and direction at a frequency of one hertz.  The AD and ADAM strategies were 

tested using all four modeling methods and 95% and 99% PIs.  These 16 combinations 

will hereafter be referred to as anomaly detectors.  The features used to model the data 

stream were selected using correlation analysis, a common approach in time-series 

modeling (Box & Jenkins 1970).  This analysis indicated that the current windspeed is 

strongly correlated with historical measurements as distant as ten minutes, as shown in 

Figure 5.1.  Because the sensor samples at one hertz (i.e., every second), there are 

approximately 600 highly correlated measurements.  Given that the complexity of data-

driven modeling increases with the number of input variables, only the first 30 seconds of 
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data were selected for the input variables of the data-driven models.  This subset of the 

highly correlated measurements provides a good tradeoff between model complexity and 

prediction accuracy.  The windspeed models were developed using 30,000 training 

examples selected at random from the period of January–May 2004 and were tested on 

data collected in June 2004.  The user-defined parameters for these models, which were 

selected as described in the previous section, are shown in Table 5.1. 

 

Figure 5.2 shows the predictive abilities of the generated data-driven models on a 

segment of the windspeed data collected on June 15, 2004, which is part of the testing 

dataset.  The clustering predictor appears to be the least accurate, while the naïve 

predictor appears to be the most accurate.  The 16 resulting anomaly detectors were then 

compared based on their ability to identify errors in the testing data. 

Figure 5.1: Autocorrelation of the SERF windspeed data calculated during the 

period of January – May 2004.  Note that r2 values of 0.8 and higher are considered 

highly correlated. 
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Since the data used in this study were subjected to manual quality control measures 

before they were archived, it was expected that the detectors would not identify many 

data anomalies in the archive.  However, this was not the case.  The detectors identified 

approximately 6% of the data during the month of June as anomalous.  This result 

encouraged focused inspection of these data. For example, Figure 5.3 shows a two 

-minute segment of the data stream from June 15, 2004, in which six suspicious events 

affecting nine data points can be easily identified.  All six of these events had been 

classified as anomalous by one or more of the 16 detectors.  Subsequent investigation of 

these types of data anomalies by the SERF data managers revealed that events such as 

these were most likely caused by wireless transmission errors. Further analysis of 

anomalous data revealed other suspicious events that were of significantly longer 

duration than those shown in Figure 5.3.  For example, Figure 5.4 shows a 35 minute 

segment of the data stream from June 22, 2004, during which a suspicious long-duration 

event occurs.  The windspeed between minutes 8 and 26 in the plot appears to have been 

offset by a constant 7 m/s.  It is the sharpness of the transition from the slower (~5 m/s) to 

the faster (~12 m/s) windspeed and back, as well as the existence of data in both the slow 

and fast regimes that appear to correlate with data in the opposite regime, which suggests 

that a significant portion of the data presented in this figure does not represent the actual 

windspeed.  This data segment is of particular interest because its behavior is similar to 

Table 5.1: Values for data-driven time-series models. 

Model Parameter Values 
Clustering Number of Clusters (k) 6 
ANN Number of Hidden Layers 1 
 Number of Nodes in First Hidden Layer 50 
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Figure 5.2: Performance of different data-driven methods for predicting the Corpus 

Christi Bay windspeed data stream. 
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the behavior of a type of sensor fault (offset bias fault) described by Koushanfar et al. 

(2003), which causes sensor data to be offset by a constant value.  Errors resulting from 

short-duration faults, such as those shown in Figure 5.3, may not have a significant effect 

on the utility of the data if time averages are used.  However, due to the high frequency 

with which these events are observed in this data stream, even moderate time averages 

are adversely affected. For example, the two-minute average (a standard granularity for 

wind data collected by the National Oceanic and Atmospheric Administration’s National 

Data Buoy Center) of the raw data shown in Figure 5.3 has a value of 7.2 m/s, whereas 

the two-minute average of the data with the nine anomalous data points removed has a 

value of 8.3 m/s, a difference of 6%.  Long-duration errors, such as those shown in Figure 

5.4, are even more worrisome because their effect can only be mitigated if very long time 

averages are used. 

 

The existence of errors in the June 2004 data indicated that the data from January to May 

(used for training) also contained errors.  Thus, before proceeding with an assessment of 

the 16 detectors, it was necessary to clean the training data and retrain the regression 

models.  Cleaning was performed using the Naïve-AD detector with a 95% PI.  The naïve 

Figure 5.3: Data exhibiting errors resulting from short duration faults. 
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detector was chosen because it performs well at identifying anomalous data and because 

it does not rely on a model of the data stream that could have been affected by errors in 

the uncleaned training data.  The AD strategy was used because its long-term 

performance is not affected by previous misclassifications (as opposed to the ADAM 

strategy, which replaces measurements classified as anomalous with its own estimate, 

based on prior data, thus perpetuating the effect of classification errors over the long 

term).  Records containing data classified as anomalous were removed from the training 

set. 

 

Once the training data were cleaned, the models were retrained, and the residuals were 

tested for normality using a Lillifors test at the 5% level.  The test indicated that although 

the distributions were symmetric and unimodal, they had thicker tails than a normal 

distribution.  This feature of the residual distributions can be illustrated using a quantile-

quantile (Q-Q) plot, such as the one shown in Figure 5.5, which compares the quantiles of 

the ANN model residuals (y-axis) with the quantiles of a standard normal distribution (x-

axis).  The Q-Q plot compares the quantiles of one distribution against the quantiles of 

another distribution and is used to identify differences between the two distributions.  A 

Figure 5.4: Data exhibiting errors resulting from long duration faults. 
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reference line is also plotted.  If the two distributions are similar, then the points will fall 

approximately on the reference line shown in Figure 5.5, whereas departures from this 

line indicate differences in the distributions.  It can be seen in Figure 5.5 that the points 

fall on the reference line in the central region of the distribution (e.g. around the mean) 

but depart from the reference line towards the tails.  This departure becomes obvious 

around x = ±1.5 and is caused by the ANN model residual quantiles having a larger 

magnitude than the standard normal quantiles in the tail region, thus indicating that the 

ANN model residuals have thicker tails than those of a normal distribution.   

 

This result affects the validity of the implicit assumption in the PI calculation (Equation 

5.1) that the model residuals are normally distributed.  However, since the central region 

of the model residual distribution behaves similar to that of a normal distribution, the PI 

Figure 5.5: Q-Q plot of ANN model residual distribution and standard normal 

distribution.  Vertical lines indicate bounds of 99% PI. 
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calculated using Equation 5.1 will be unaffected.  In the case of the ANN model residuals, 

this region covers approximately x = ±1.5.  Thus, for prediction levels of 85% or less, the 

PI calculated with Equation 5.1 will accurately bound the region of plausible 

measurement values that the measurements will take with a frequency of 1-p.  For 

prediction levels greater than approximately 85%, the PI will be non-conservative (i.e. 

the frequency that the measurement will fall into the p% PI will be less than 1-p), thus 

resulting in a higher false positive rate than p%.  This results from the existence of a 

higher frequency of extreme (tail) values in the model residual distribution than would be 

indicated by a normal distribution.  Since this non-conservative effect increases as the PI 

bounds move further into the tails of the model residual distribution, the PI will become 

increasingly non-conservative as the prediction level increases.  For example, the vertical 

lines in Figure 5.5 are at positions x = ±2.58 on the standard normal quantiles and 

indicate the bounds of the 99% PI.  Within this region, the quantiles of model residual 

distribution deviate moderately from the quantiles of the normal distribution; thus, it is 

expected that the non-conservative effects for prediction levels less than 99% will be 

moderate.  The other model residual distributions exhibit behavior similar to that of the 

ANN model residuals, indicating that for prediction levels less than 99%, the PI will 

overestimate the frequency that a measurement will fall within its bounds, thus causing 

slightly higher than expected false positive rates.   

 

The performance of the 16 anomaly detectors at identifying additional erroneous data was 

then quantified using a sample of over 2700 other data points from the data archive that 

had not been cleaned.  True/false positives were identified visually, using domain 
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knowledge provided by the SERF data managers.  The data managers indicated that 

measurements that deviate from their close neighbors by approximately two m/s or more 

and that break the relatively smooth trend of the windspeed are most likely erroneous. 

For example, the erratic oscillations noted in Figures 5.2 and 5.3 are erroneous because 

an air mass cannot plausibly accelerate and then decelerate at the rate required to cause 

such oscillations. 

 

Figure 5.6 shows the detectors’ false positive rate for identifying erroneous data in the 

windspeed data stream.  It can be seen that the ADAM strategy reduces the false positive 

rates of the perceptron and ANN-based detectors, whereas it increases the false positive 

rates of the naïve and clustering-based detectors.  For the perceptron and ANN-based 

detectors, without the use of mitigation, previously processed erroneous data adversely 

affect future classifications.  This occurs because using erroneous data as inputs to the 

perceptron or ANN models requires the model to make a prediction using a type of input 

data (i.e. erroneous measurements) with which it was not trained (i.e., to extrapolate 

beyond the training data), thus reducing the accuracy of the one-step-ahead predictions 

and their corresponding PIs.  The naïve and clustering-based detectors, however, appear 

to be less sensitive to erroneous input data.  Unlike the perceptron and ANN detectors, 

the naïve and clustering-based methods do not predict the future windspeed using a 

function of the input values.  Rather, these detectors predict the future windspeed using a 

similar, previously observed example.  Thus, input measurements to these detectors that 

vary significantly from the current locally-averaged windspeed (e.g. data errors) will not 
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cause a future windspeed prediction that is vastly different from previously observed 

windspeeds. 

 

However, the use of the ADAM strategy can negatively impact the performance of a 

detector when it misclassifies a non-anomalous point as anomalous, because this causes 

the detector to replace the valid measurement with an incorrect value, which sometimes 

results in the detector continuing to make mistakes and replace valid measurements with 

incorrect values until the cycle is broken.  In the case of the perceptron and ANN-based 

detectors, this behavior is uncommon and outweighed by the positive benefits of 

mitigation described previously, whereas in the case of the naïve and clustering-based 

detectors, this behavior significantly affects the detectors’ performance.  Since the naïve-

based detectors use only one data point to predict the future windspeed, it is 

understandable that, when using the ADAM strategy, this method perpetuates 

Figure 5.6: False positive rates for detecting June 2004 windspeed data errors 

using 95% and 99% PIs. 



 100

misclassifications, because future predictions reflect the incorrect values that replaced 

valid measurements.  However, it is less clear why the clustering-based detectors behave 

in this manner.  Perhaps it is because the cluster membership is more heavily influenced 

by recent measurements than by distant measurements. 

 

Figure 5.6 also indicates that an increase in the prediction level from 95% to 99% 

decreases the number of false positives, though this decrease is not as dramatic as the 

change associated with the use of mitigation, indicating that the appropriate use of 

mitigation has the most significant effect on the detectors’ false positive rate. 

 

The false negative rate for the detectors is shown in Figure 5.7.  It can be seen that the 

naïve, perceptron, and ANN-based detectors misclassify significantly fewer erroneous 

data than the clustering-based detectors, which misclassify almost all of the erroneous 

data.  Thus, the clustering-based detectors are not useful for detecting erroneous data in 

the windspeed data stream.  It can also be seen that the use of the ADAM strategy 

significantly improves the ability of the perceptron-based detectors to correctly classify 

erroneous data, whereas it does not significantly affect the false negative rates of the 

other detectors.  The decrease in the perceptron-based detectors’ false negative rate, due 

to the use of the ADAM strategy, can again be attributed to erroneous data adversely 

affecting future classifications by requiring extrapolation of the perceptron model. 

Furthermore, an increase in the prediction level from 95% to 99% results in an increase in 

the false negative rate, which, for the best-performing detectors, is larger than the 

corresponding decrease in the false positive rate, indicating that a 95% PI provides a 
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reasonable tradeoff between misclassifying erroneous and non-erroneous data in this data 

stream. 

 

5.3 Discussion 

The anomaly detectors used in the case study represent 16 instantiations of the proposed 

anomaly detection method, which relies on a threshold deviation from a model prediction 

to delineate the boundary between anomalous and non-anomalous data.  This type of 

method will misclassify both anomalous data that have smaller deviations than the 

threshold and non-anomalous data that have larger deviations than the threshold.  Thus, 

selecting an appropriate threshold is important.  The benefit of using the p% PI, rather 

than an arbitrary, user-defined threshold, is that the PI provides guidance (in the form of 

the prediction level) for the selection of the threshold without requiring any knowledge of 

the process variables being measured.  The p% PI indicates the region likely to contain at 

Figure 5.7: False negative rates for detecting June 2004 windspeed data errors using 

95% and 99% PIs. The bars for the cluster-based methods have been truncated. 

These methods have false negative rates greater than 89%. 
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least p% of the possible sensor measurements, given both the modeling and measurement 

errors; thus, we expect that approximately (1-p)% of the non-anomalous data will be 

misclassified as anomalous.  Despite the anticipation of a slightly higher false positive 

rate resulting from the heavy-tail behavior of the model residual distributions (Figure 5.5), 

the false positive rates for the detectors in the case study (Figure 5.6) roughly agree with 

this expectation, if the effect of mitigation is accounted for. This indicates that the normal 

assumption implicit in the PI calculation is reasonable for the CCBay windspeed data.  

 

Note that the prediction level, however, cannot give an a priori estimate of the false 

negative rate, because the behavior of the anomalous data is unknown, and thus, it is 

impossible to estimate how many of these data will fall inside a given PI. For this reason, 

the prediction level should be set such that the false positive rate is reasonably low (e.g. 

prediction levels of 95% or 99%). Fortunately, in many practical applications of anomaly 

detection, such as data QA/QC, setting the prediction level in this way yields good results 

because anomalous data that fall outside the PI are more important to classify correctly 

than those that fall inside of the PI, since, given a reasonably accurate model of the time-

series data, falling inside the PI indicates that anomalous data are roughly within the 

measurement error of the sensor. For example, the nine obvious erroneous data points in 

Figure 5.3 were identified by the ANN-ADAM detector with 95% PI, and cleaning these 

points changed the average value of all 120 points by 6%. 

 

In addition to providing a principled framework for threshold selection, the proposed 

anomaly detection method allows a detector for one data stream to operate independently 
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of the behavior of other data streams or their detectors by utilizing autoregressive models 

of the data stream.  The use of autoregressive models, however, precludes the use of 

information gathered by other sensors, without which the anomaly detector may 

misclassify certain types of data anomalies, but the case study demonstrates that this 

limitation does not significantly affect the success of the anomaly detection method for 

performing QA/QC on one Corpus Christi Bay windspeed data stream. 

 

Finally, the data-driven autoregressive anomaly detection method developed in this study 

must accommodate two features of environmental sensor data streams: non-time-

stationary data (i.e. data whose pattern changes with time) and gaps in the sensor data 

stream. Because many environmental processes, such as wind, are not time stationary 

(Amenu et al. 2007), data-driven models must be updated periodically.  For batch-trained 

models, such as those employed in this case study, model updating can be accomplished 

by retraining the models periodically.  Batch retraining can be time consuming, but 

because of energy constraints, sensor data is usually sent from the sensor to the data 

archive in small batches, rather than one at a time, so retraining only has to be faster than 

the frequency of data broadcasts, not faster than the sensor sampling rate.  Except for the 

poorly performing cluster-based detectors, training the data-driven models is relatively 

quick (in this instance, on the order of one minute).  Therefore, since the SERF 

windspeed data is sent in 5 minute intervals, model updating can occur between data 

transmissions.  On-line training algorithms (i.e. algorithms in which the model is 

incrementally updated for new data as they arrive from the sensor) could be considered 

for updating the models if the data were transmitted more frequently.  However, with an 
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on-line training algorithm, it is unclear how best to calculate the standard deviation of 

model errors needed for the PI calculation (Equation 5.1).  Therefore, batch retraining is 

preferable for updating data-driven models to account for changing temporal patterns in 

the data.  If data arrive faster than retraining can occur, then a dual model approach can 

be used, in which a new model is trained while the previous model is being used for 

anomaly detection. 

 

Gaps in the sensor data stream are the result of the sensor going off-line because of the 

harsh environment in which the sensors operate.  The windspeed data set considered in 

the case study has over 500,000 gaps of durations ranging from 1 second to 90 days.  The 

vast majority (99.99%) of these gaps, however, are less than five seconds in duration.  

Because the detectors require a defined set of input features, these gaps render the error 

detectors unable to classify certain future measurements as anomalous/non-anomalous.  

The naïve-based detectors require the measurement at a time one second previous to the 

prediction time; thus, they cannot classify the first measurement after a sensor goes back 

on-line.  The remaining methods require measurements at times minus one through 30 

seconds in order to classify a new measurement; thus, they cannot classify any data 

within the first 30 seconds after the sensor goes back on-line.  Some of these 

measurement gaps can be addressed by using the detector to fill in missing values with 

the predicted value of the measurements.  This method will only work for short duration 

gaps, though, as the accuracy of the model prediction will degrade with successive 

iterations.  However, since only 0.01% of the gaps are longer than four seconds, this 

method will be useful in the majority of cases.  For the few remaining cases, manual 
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inspection of a maximum of 30 data points per sensor is likely to be feasible, especially 

since multiple sensors are unlikely to fail at the same time. 

 

5.4 Conclusion 

Real-time detection of anomalies in environmental streaming data has many practical 

applications, such as data QA/QC, adaptive sampling, and anomalous event detection.  

This research developed a new anomaly detection method based on autoregressive data-

driven models of the sensor data stream and the PI.  This method performs fast, 

incremental evaluation of data as it becomes available, can scale up to large quantities of 

data, and requires no a priori information regarding process variables or the types of 

anomalies that may be encountered.  To account for temporal changes in the data pattern, 

the data-driven model employed by this method can be updated, a process which takes 

approximately one minute.  Since the SERF windspeed sensor data is transmitted in five-

minute blocks, model updates can be accomplished between data transmissions.  

Furthermore, because this method employs autoregressive models of the sensor data 

stream, it is easy to apply to a network of heterogeneous sensors, since the performance 

of the anomaly detector on one sensor data stream is independent from detrimental 

properties of other sensor data streams, such as unavailable data or undetected erroneous 

data.  Finally, because the PI is calculated using 10-fold cross-validation, it accounts not 

only for uncertainty in the data, but also for uncertainty in the data-driven model 

parameters. 
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The value and efficacy of this anomaly detection method for data QA/QC is illustrated 

using a case study involving a windspeed data stream from Corpus Christi Bay.  

Anomaly detectors using different data-driven modeling techniques and both the AD and 

ADAM anomaly handling strategies identified a significant number of erroneous 

measurements in the windspeed data that manual QA/QC had failed to detect.  The errors 

had durations ranging from 1 second to several minutes and affected approximately 6% 

of the data.  After cleaning the errors in the training data, an assessment of 8 

instantiations of both the AD and ADAM strategies indicated that the performance of the 

perceptron and ANN-based detectors at detecting errors in the testing data was 

significantly improved by the use of the ADAM strategy, and that the ANN-ADAM 

detector using a 95% PI performed best, with a false positive and a false negative rate of 

1% and 2%, respectively.  

 

The case study results suggest that the anomaly detection method developed in this study 

is a useful tool for identifying anomalies in environmental streaming data.  However, it 

should be noted that while the ANN produced the best model for the windspeed data 

considered in the case study, this model may not be the most appropriate choice for other 

types of environmental data.  The four data-driven techniques considered in this paper 

have been shown to produce good predictions on different types of time-series data and 

are a useful starting point for selecting the most appropriate model, but the anomaly 

detection method developed here is not restricted to these models and can easily 

accommodate other data-driven modeling techniques.  This method is limited, however, 

because it cannot consider several data streams at once and, hence, cannot take advantage 
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of information gathered by multiple sensors.  This lack of information may cause the 

anomaly detector to misclassify certain types of data anomalies.  This method is also 

limited because it requires a manual restart if the sensors go off-line, as it cannot continue 

to classify measurements after several sequential measurements have been missed. 
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Chapter 6:  Real-Time Bayesian Anomaly Detection in Streaming Environmental 

Data 

Chapter 5 presented an analytical redundancy method for detecting anomalies in 

environmental sensor data and compares its performance using several data-driven 

modeling approaches, including nearest neighbor, clustering, perceptron, and artificial 

neural networks. This method, however, is limited, because it cannot consider several 

data streams at once and because missing values in the data stream render it incapable of 

classifying measurements that immediately follow the missing values.  To address these 

limitations, this chapter develops three real-time anomaly detection methods that employ 

dynamic Bayesian networks (DBNs) to identify anomalies in streaming environmental 

data.  DBNs are artificial intelligence techniques that model the evolution of discrete- 

and/or continuous-valued states of a dynamic system by tracking changes in the system 

states over time.  The methods developed in this study use three different DBN 

implementations: the well-known Kalman filter; the robust Kalman filter, which, to the 

author’s knowledge, has not found wide application in the field of environmental 

engineering; and the Rao-Blackwellized particle filter, which has only recently been 

developed.  Furthermore, because of the nature of environmental streaming data, it was 

necessary for the implementations of each of these DBNs to be modified such that they 

were robust to missing values in the sensor data as discussed in Section 6.1. The 

following section describes these methods in detail.  The DBN-based methods are then 

tested through a case study, in which they are used to identify anomalous measurements 

in eight meteorological data streams from the same WATERS Network testbed 

considered in Chapter 5.  Finally, implications of the results are discussed. 
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6.1 Methods 

This study develops three DBN-based methods for real-time detection of anomalies in 

environmental sensor data streams.  As discussed in Chapter 2, DBNs are well-suited for 

modeling time series data, such as those composing sensor data streams, because they can 

easily model multivariate data and non-stationary processes.  Furthermore, filtering can 

be used to infer the values of the DBN system state variables from the available 

measurements without using any future measurements; thus, anomaly detection can be 

performed in real time.  Unlike the anomaly detection methods presented in Chapter 5, 

the methods developed in this chapter can process many sensor data streams jointly, by 

considering the data at each measurement interval in chronological order.  Two of the 

anomaly detection methods developed here use the Bayesian credible interval (BCI) to 

classify data as either normal or anomalous.  The first method uses Kalman filtering to 

calculate the BCI and thus will be referred to as the BCI-kf method.  The second method 

uses robust Kalman filtering to calculate the BCI and thus will be referred to as the BCI-

rkf method.  The third method uses the maximum a posteriori (MAP) estimate of a 

variable indicating the status (normal/anomalous) of each measurement to classify the 

sensor data.  Thus, the third method will be referred to as the maximum a posteriori 

measurement status (MAP-ms) method. 

 

The BCI-based methods track the multivariate distribution of the system states and their 

observed counterparts, which are measured by the environmental sensors, using the DBN 

shown in Figure 6.1.  The system states are assumed to be first-order Markov processes, 
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so the state at time t only depends on the state at time t-1.  Filtering is used to sequentially 

infer the posterior distribution of the state variables and their corresponding observations, 

as new measurements become available from the sensors.  The posterior distribution of 

the observed variables can then be used to construct a BCI for the most recent set of 

measurements.  The p% BCI indicates that the posterior (i.e. adjusted for the available 

observations) probability of the observed state variables falling within the interval is p; 

thus, the BCI delineates the range of plausible values for sensor measurements.  For this 

reason, any measurements that fall outside of the p% BCI will be classified as anomalous.  

The 100(1-α)% BCI for a new measurement can be calculated as: 

Σ± *2/αzx  (6.1) 

 

where 2/αz  is the 100(1 − α/2)th percentile of a normal distribution and Σ  is the variance 

of the posterior distribution of the measurement prediction.  The BCI method of anomaly 

detection is similar to the prediction interval-based method presented in Chapter 5; 

however, because the BCI is based on the posterior distribution (whereas the prediction 

interval is not), the width of the p%-BCI changes dynamically with the uncertainty of the 

modeled system.  Furthermore, unlike the cross-validation method for calculating the 

prediction interval (PI), the method used to calculate the BCI does not take into account 

uncertainty in the estimation of the model parameters; thus, it differs from the cross-

validation-based method presented in Chapter 5. 
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BCI-kf: In the BCI-kf method, Kalman filtering is used to track the state variables.  Thus, 

the transition and observation models are linear Gaussian.  Though this is a strong 

assumption, as discussed in Chapters 2 and 5, the Kalman filter has been successful for 

modeling time-series data in a wide variety of applications.  The transition and 

observation models used for Kalman filtering are learned from sensor data using the 

expectation maximization (EM) method, as described in Section 2.5.  Since the 

measurements correspond directly to the state variables tracked by the DBN, the 

observation model is constrained, such that the observation matrix (matrix C in Equation 

2.2) is the identity matrix, and such that the observation covariance matrix (matrix R in 

Equation 2.2) is diagonal.  These constraints incorporate domain knowledge into the 

DBN, indicating that the measurements directly correspond to the process being 

measured and that measurement errors are not correlated between sensors, respectively.  

Due to the tendency of the EM method to converge to sub-optimal solutions as the joint  

probability distribution narrows to a degenerate distribution centered on one of the 

training data points (as discussed in Section 2.5.1), it was necessary to perform four EM 

Figure 6.1: Schematic of DBN used in BCI-based anomaly detection.  Vector X 

represents the continuous-valued system variables and vector Z represents the 

continuous-valued observations. Subscripts indicate time. 
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trials starting with different initial conditions, before a suitable parameterization was 

found 

 

BCI-rkf: In the BCI-rkf method, robust Kalman filtering is used to track the state 

variables.  Again, the transition and observation models are assumed to be linear; 

however, robust Kalman filtering can account for outliers (i.e. anomalies) in the data 

through the use of a mixture-of-Gaussians observation model, which has been 

demonstrated to approximate many heavy-tailed distributions with high fidelity (Blum et 

al. 1999, Efron & Olshen 1978).  For example, the model residual data that were shown 

to have heavier-tails than a normal distribution (Figure 5.5) can be well approximated by 

a mixture of two Gaussian components with zero mean and variances of 1 and 12, 

respectively, as demonstrated in the quantile-quantile (Q-Q) plot shown in Figure 6.2.  

Recall that a Q-Q plot is used to identify differences between two distributions, and that 

if the two distributions are similar, then the points will fall approximately on the 

reference line.  As shown in Figure 6.2, for this case study, a simple two-component 

Gaussian mixture is able to model data with a heavy-tailed distribution.  In general, since 

the complexity of robust Kalman filtering increases with the number of Gaussian 

components used in the mixture model, it is preferable to begin with a two component 

mixture. A Q-Q plot can then be used to determine how well the mixture corresponds 

with the data, and the number of components can be increased one-by-one until a 

sufficiently close fit is achieved.   
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Since measurement anomalies are expected in the sensor data, robust Kalman filtering 

will more accurately model the system than Kalman filtering.  Since the mixture changes 

dynamically as a function of the observations, the result is an overall non-linear model of 

the system and observation dynamics.  In this method, the distribution of the 

measurements is represented as a mixture of 2N Gaussians, where N is the number of 

measurements, each corresponding to a unique combination of normal and anomalous 

measurements.  For example, if there are two measurements, then the Gaussian mixture 

will have four components corresponding to the cases (normal, normal); (normal, 

anomalous); (anomalous, normal); and (anomalous, anomalous).  Since the robust 

Figure 6.2: Q-Q plot of ANN model residual distribution and mixture of two 

Gaussian components with means of 0 and 0, variances of 1 and 12, and mixture 

ratios of 0.75 and 0.25, respectively. 
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Kalman filter can be conceived as a weighted mixture of Kalman filters (as noted in 

Chapter 2), setting the observation covariance in this way results in a mixture of Kalman 

filters, each processing a different subset of the sensors.  The transition and observation 

models developed for the Kalman filter are adapted for use in the robust Kalman filter as 

follows.  The state transition model for each mixture component in the robust Kalman 

filter is equivalent to that of the Kalman filter.  For the observation model, the 

observation matrix of the robust Kalman filter is the same as that of the Kalman filter, but 

the observation covariance matrix changes for each of the mixture components.  For the 

case in which all the measurements are normal, the observation covariance matrix is 

equivalent to that of the Kalman filter, whereas for the cases in which one or more 

measurements are anomalous, the parameter specifying the measurement variance of the 

anomalous measurement is set to be a large number (e.g. 1,000), indicating that 

regardless of the true state of the system, the measurement could take any real value with 

approximately equal probability. This description of anomalous measurements is used 

because it indicates that an anomalous measurement is more likely to fall outside the 

range of plausible measurements than a non-anomalous measurement, without requiring 

a priori knowledge of the types of anomalies that can occur.  The mixture ratio used by 

the robust Kalman filter is set manually, using domain knowledge regarding the 

frequency of measurement anomalies.  Manually setting the parameters for the cases in 

which one or more measurements are anomalous is necessary because anomalous 

measurements are, by definition, infrequent; as such, sufficient information may not be 

available for learning these parameters from the data.  Furthermore, learned parameters 

may define anomalies too narrowly to identify the range of anomalies that may be 
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encountered.  Because the BCI-rkf method does not explicitly track the anomalies 

through time, it cannot represent any dependency relationships between anomalies; thus, 

the assumption of time independence of the anomalies is implicit in this method. 

 

MAP-ms: The MAP-ms anomaly detection method uses a more complex DBN that 

includes a discrete variable that indicates whether or not each measurement, within a 

given measurement interval, is anomalous.  The graphical structure of this DBN is shown 

in Figure 6.3.  If there are N measurements within each measurement interval, and if there 

are only two possible measurement statuses (i.e. normal/anomalous), then this variable 

will have 2N values, each corresponding to a unique combination of measurement 

classifications.  For example, if there are two measurements, then the measurement status 

variable will have four values: (normal, normal); (normal, anomalous); (anomalous, 

normal); and (anomalous, anomalous); thus, it can be seen that with a binary 

(normal/anomalous) classification strategy, the DBNs considered in the BCI-rkf and 

MAP-ms method are similar because each represents the belief state as a mixture of 2N 

Gaussian components.  Thus, this DBN will also be able to represent heavy-tailed 

distributions well, as illustrated in Figure 6.2.  Rao-Blackwellized particle filtering is 

used to sequentially infer the posterior distribution of the state variables and their 

observations as new measurements become available from the sensors.  The MAP 

estimate (i.e. the most likely value, given the posterior distribution) of the state variable 

that indicates the measurement status can then be used to classify the sensor 

measurements as normal or anomalous.  As in the case of the robust Kalman filter, the 

transition and observation models developed for the Kalman filter are used to describe 
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the case in which all measurements are normal; for the cases in which one or more 

measurements are anomalous, the parameter specifying the measurement variance of the 

anomalous measurement is set to be a large number.  Thus, given a particular value of the 

discrete measurement status variable, the transition and observation models are linear.  

However, since the transition model describing the measurement status variable is non-

linear, the overall DBN model is non-linear.   

 

Finally, the filtering algorithms (Kalman filtering, robust Kalman filtering, and Rao-

Blackwellized particle filtering) were modified to accommodate missing values in the 

sensor data streams.  This modification is necessary because of the harsh environment 

under which environmental sensors must operate.  As discussed in Section 2.5, this 

modification causes the elements corresponding to the missing measurements in the gain 

Figure 6.3: Schematic of DBN used in MAP-ms anomaly detection.  Vector X 

represents the continuous-valued system variables, vector Z represents the 

continuous-valued observations, and scalar MS indicates the discrete measurement 

status. Subscripts indicate time. 
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matrix as well as the system and measurement noise matrices to be equal to zero.  Thus, 

the posterior estimate of the state variable corresponding to the missing measurements is 

equal to the prior estimate of this variable. 

 

6.2 Case Study 

To demonstrate the efficacy of the anomaly detection methods presented in Section 6.1, 

they were applied to eight meteorological data streams from Corpus Christi Bay.  These 

data streams measure windspeed, wind direction, air temperature, and barometric 

pressure at two minute intervals at two SERF sensor platform locations: CC003 and 

CC009.  The CCBay platform discussed in Chapter 5 will not be addressed in this study, 

because it is no longer used.  Figure 6.4 shows the location of these sensor platforms 

within Corpus Christi Bay. 

 

Because the sensors addressed in this case study are under development, there are many 

missing measurements due to sensor outages in the historical data record.  Additionally, 

even though the historical data were subjected to manual quality control measures before 

they were archived, an initial application of the anomaly detection algorithms identified 

several anomalous events that were subsequently confirmed, through investigation by the 

SERF data managers, to be the result of sensor failures.  Data from November 2006, 

which do not appear to contain sensor failure errors, were used for training the DBNs. 

This time span was chosen because the EM algorithm requires contiguous blocks of 

measurements for learning and because these data are reasonably complete (there still 

were approximately 10 and 800 missing measurements in each data stream from CC003 
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and CC009, respectively, during this time period).  It does, however, reflect the effects of 

two storm events on November 11 and 31.  During November, the approximate ranges of 

the windspeed, wind direction, air temperature, and barometric pressure at both platform 

locations are: 0-40 knots (kt), -180º-180º degrees from north (dfn), 5º-28º Celsius (ºC), 

and 1000-1040 millibars (mb), respectively.  The performance of the anomaly detectors 

was then evaluated using data from early December.  These data were chosen because the 

CC003 wind direction sensor went offline around December 15 (subsequent to this 

study’s completion, this sensor was returned to duty). 

 

6.2.1 Detector Parameterization 

Parameters for the DBNs were learned from the approximately 21,600 measurements 

collected during the month of November 2006, as described in the previous section.  For 

this case study, The BCI-kf and BCI-rkf methods were performed using a 99% BCI for 

anomaly classification.  This level of BCI was chosen for two reasons: (1) because it 

should not misclassify many normal data points as anomalous (the p% BCI is expected to 

make this type of misclassification (1-p)% of the time), and (2) because it produced good 

results in preliminary trials.  The reader may recall that in Chapter 5, a 95% PI was used.  

This discrepancy can be explained by noting the difference between a PI and a BCI. PIs 

are based on prior distributions of predicted measurements, whereas BCIs are based on 

posterior distributions of predicted measurements.  Since posterior distributions are 

updated for actual measurements, they are narrower than prior distributions; thus, for the 

same level p, the PI will be wider than the BCI.  For this reason, the level of the BCI used 

in this study (99%) does not correspond to the level of the PI used in Chapter 5 (95%).   
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The MAP-ms method was performed using Rao-Blackwellized particle filtering in four 

trials with 1000; 10,000; 50,000; and 100,000 particles.  In the results presented below, 

the number of particles used in the MAP-ms method is indicated by appending the name 

with the number of particles (e.g. MAP-ms-10k indicates 10,000 particles).   

 

Two of the data types addressed in this study represent measurements of processes with 

non-linear dynamics: windspeed, which cannot be negative, and wind direction, which 

has a discontinuity between -180 and 180 dfn.  Despite the non-linearity of windspeed, 

preliminary work indicated that a linear dynamics model provides a good approximation 

of this process.  Wind direction, however, was not well approximated by a linear 

dynamics model; thus, this study uses a transformation that converts wind direction into a 

Figure 6.4: Location of SERF CC003 and CC009 sensor platforms within Corpus 

Christi Bay. 

CC 003 CC 009
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two-component vector composed of the cosine of the angle (with respect to north) of the 

wind and the sine of the angle (with respect to north) of the wind.  Thus, this 

transformation maps the wind direction into two values that vary smoothly from -1 to 1.  

These values can be envisioned, respectively, as indicating the ratio of the total wind 

vector blowing in the northerly and easterly directions.  Preliminary work also 

investigated the transformation of the windspeed and wind direction data streams into the 

two-dimensional wind velocity vector.  This transformation addressed not only the non-

linearity of wind direction, but also removed the non-negativity condition of the 

windspeed data.  However, this transformation rendered the detectors unable to 

distinguish between anomalies in the windspeed sensor, the wind direction sensor, or 

both sensors.  For this reason, this latter transformation was not pursued further.   

 

Because of the transformation of the wind direction data, the DBNs in all three anomaly 

detection methods tracked 10 state variables (one each for windspeed, temperature, and 

pressure at each location, and two each for wind direction at each location).  Thus, the 

vector X in Equation 2.2 has 10 dimensions referring to the true system states: windspeed 

at CC003, wind direction (northerly component) at CC003, wind direction (easterly 

component) at CC003, air temperature at CC003, barometric pressure at CC003, 

windspeed at CC009, wind direction (northerly component) at CC009, wind direction 

(easterly component) at CC009, air temperature at CC009, and barometric pressure at 

CC009.  The vector Z in Equation 2.2 also has 10 dimensions referring to the 

measurements of these 10 states.  The linear model parameters A and C in Equation 2.2 
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are 10x10 matrices, as are the covariance matrices Q and R in Equation 2.2. See Chapter 

2 for more details on how these parameters are calculated. 

 

Both the robust Kalman filter and the Rao-Blackwellized particle filter are designed to 

model 28=256 anomaly combinations, where anomalies in the transformed wind direction 

vector components are considered jointly.  These anomaly combinations result in 

measurement covariance matrices that are equivalent to the measurement covariance 

matrix of the no anomaly case, except that the variance of the anomalous measurements 

is set to 1000 as discussed previously.  The probability of an anomaly in each data stream 

(used to set the mixture ratio for the robust Kalman filter (see Equation 2.10) and the 

discrete variable transition model for the Rao-Blackwellized particle filter (see Section 

2.5.3) was specified to be 5% and independent of current or historical anomalies in any 

data stream.  This value was selected to be representative of the frequency of data 

anomalies due to measurement or data transmission errors in the Corpus Christi sensor 

array, based on the results of the case study presented in Chapter 5.  The assumption of 

time-independence of the anomalies was made because there is no information regarding 

the persistence of anomalies caused by sensor failures, and because the assumption of 

independence is more general than the assumption of a particular dependency 

relationship.  The assumption of independence of concurrent anomalies in different data 

streams is made because failure of a sensor rarely affects the capabilities of other sensors, 

and because there is no indication that such a relationship exists for the SERF 

meteorological sensors considered in this case study. 
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To facilitate comparison of the DBN-based anomaly detectors with the autoregressive 

anomaly detector (AR_ADET) presented in Chapter 5, eight AR_ADET detectors (one 

for each data stream) were used.  These detectors employed an artificial neural network 

(ANN) model of the sensor data stream, as indicated in Chapter 5.  Parameterization of 

these models was performed as described in Chapter 5, using correlation analysis to 

determine the salient autoregressive variables.  The resulting autoregressive models for 

windspeed and wind direction use the most recent thirty measurements to predict the next 

measurement, while the resulting models for air temperature and barometric pressure use 

the most recent two measurements.  The models were then trained using 30,000 randomly 

selected data points from October through November 2006.  These data were selected for 

training, because data prior to October were not available, and because data from 

December were to be used for demonstration of the detectors.  However, since these data 

do not span as many months as the training data used in Chapter 5, it was expected that 

the AR_ADET detectors would not perform as well as indicated in Chapter 5.  Since 

ANNs are suitable for modeling non-linear data, the wind direction was modeled directly 

(i.e. the transformation described above was not used).  Because the measurement 

interval of the data considered in this study was significantly longer (2 minutes) than the 

measurement interval of the data used in Chapter 5 (1 second), the variability of the data 

from one interval to the next was larger than that in the data used in Chapter 5.  For this 

reason, and because the synthetic anomalies (which will be described shortly) were less 

dramatic (compared to the normal variability of the processes) than the observed 

anomalies described in Chapter 5, a narrower prediction interval (80%) was used in this 

study.  Furthermore, this narrower PI, coupled with the increased variability between 
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consecutive measurements (especially in the cases of the windspeed and temperature 

measurements), resulted in the AR_ADET method exhibiting a higher false positive rate 

than that which was observed in Chapter 5; therefore, the ADAM method tended to 

replace valid measurements misclassified as anomalous with its own estimate, based on 

prior data, which perpetuated the effect of classification errors over the long term and 

degraded the performance of the anomaly detectors.  For this reason, the AD strategy was 

used for the windspeed and temperature data streams. 

 

To demonstrate the efficacy of these anomaly detection methods, their performance will 

be discussed using synthetic anomalies, as well as actual data anomalies that were 

identified within the December meteorological data. 

 

6.2.2 Detection of Synthetic Anomalies 

Synthetic anomalies affecting data from December 2-5 are used to compare the 

performance of the anomaly detection methods developed in this study with each other, 

as well as with the AR_ADET method.  Synthetic anomalies are used for this comparison, 

because there are not enough known anomalies in the historical sensor data to evaluate 

the relative performance of the methods, and because it is difficult to know the true 

classification of observed data, which is necessary for false positive/negative calculations. 

 

The synthetic errors were specified to be transient errors (i.e. they did not persist for long 

periods of time), and were generated according to the following equation: 
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∆±= MM *  (6.1) 

where *M  is the anomalous measurement, M  is the true measurement, and ∆  is an 

offset.  The offsets for windspeed, wind direction, air temperature, and barometric 

pressure were selected based on judgement, to be [4-12] kt, [45-180] dfn, [3-9] ºC, and 

[10-30] mb, respectively; when domain knowledge was not available, they were set 

intuitively.  Synthetic anomalies of this type were randomly introduced into each of the 

eight data streams independently with a frequency of 5%.  Since the anomalies in one 

sensor data stream were independent of other previous and current anomalies, both 

concurrent anomalies in different data streams and multiple sequential anomalies in a 

single data stream, could occur sequentially. 

 

Figure 6.5 illustrates the false positive rates of the BCI-kf, BCI-rkf, MAP-ms, and 

AR_ADET methods, where the false positive rate is the ratio of the number of data 

misclassified as anomalous to the total number of non-anomalous data.  Because of the 

stochastic nature of particle filtering, the results for the MAP-ms detectors were averaged 

over five replicates.  As can be seen in this figure, the BCI-rkf and MAP-ms detectors 

performed significantly better than the AR_ADET and BCI-kf detectors.  This result is 

not surprising, because both the BCI-kf method (as discussed in Section 2.5) and the 

AR_ADET method are highly sensitive to anomalous measurements, and because the 

AR_ADET method cannot take advantage of information in other data streams that may 

help the classifier discern between an anomalous and a normal measurement.  There is 

little difference between the false positive rates of the BCI-rkf detector and the MAP-ms 

detectors that use more than 1000 particles, with the MAP-ms-100k method showing a 
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slight advantage over the BCI-rkf method.  These results indicate that a conceptual model 

that accounts for outlying measurements is better suited for describing systems in which 

measurements can be anomalous. 

 

Figure 6.6 illustrates the false negative rates of the three Bayesian detection methods and 

the AR_ADET method, where the false negative rate is the ratio of the number of data 

misclassified as anomalous to the total number of non-anomalous data.  Again the results 

of the MAP-ms method were averaged over five replicates.  As can be seen in this figure, 

the AR_ADET and BCI-kf methods were again outperformed by the BCI-rkf and the 

MAP-ms methods.  However, there is an obvious difference between the BCI-rkf method 

and the MAP-ms method with fewer than 50,000 particles, which results in increased 

Figure 6.5: False positive rates for the BCI-kf, BCI-rkf, MAP-ms, and AR_ADET 

detectors for classifying transient synthetic anomalies. 
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false negative rates of the MAP-ms-1k and MAP-ms-10k detectors.  This difference can 

be explained by the difference between robust Kalman filtering and Rao-Blackwellized 

particle filtering, with respect to their representations of the non-Gaussian state 

distribution caused by anomalous measurements.  As described in Chapter 2, the robust 

Kalman filter uses the optimal Gaussian representation of a mixture-of-Gaussians 

distribution, while the Rao-Blackwellized particle filter uses a cloud of particles to 

resolve the state distribution.  The latter approximation of the non-Gaussian state 

distribution has more descriptive power, but the quality of this approximation is highly 

dependent on the number of particles used.  As the number of particles increases, the 

particle filter can better represent regions of low probability within the state distribution.  

Because data anomalies are, by definition, infrequent events, and because the synthetic 

Figure 6.6: False negative rates for the BCI-kf, BCI-rkf, MAP-ms, and AR_ADET 

detectors for classifying transient synthetic anomalies. 
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anomalies considered here are independent, the probability of multiple concurrent 

anomalies is finite but small (e.g. the probability of an anomaly occurring at the same 

time in three data streams is 0.053=0.000125); thus, anomalous events fall into the low 

probability regions of the state distribution.  Therefore, as the number of particles 

increases, the particle filter can better represent regions of the state distribution that 

correspond to multiple anomalies, thus resulting in a lower false negative rate.  From this 

explanation, it would seem that in order to ensure that the particle filter could represent 

the case of anomalies occurring simultaneously in all eight data streams, the particle filter 

would need to use at least 25 billion particles.  Thankfully, however, these results 

indicate that the MAP-ms method performs very well with significantly fewer particles, 

though it does require approximately 50,000 particles to match the performance of the 

BCI-rkf method on this set of data. 

 

In this analysis, the DBNs considered all eight sensor data streams at once to perform 

coupled anomaly detection; thus, the detectors could take advantage of correlated data 

being measured by other sensors.  To demonstrate the beneficial effect of considering 

multiple data streams in the DBN model, three additional detectors using the MAP-ms 

method of anomaly detection, but addressing only windspeed data, were created.  The 

first DBN considered only the windspeed measurement from the CC003 platform, the 

second considered only the windspeed from the CC009 platform, and the third considered 

the windspeed from both platforms to perform coupled detection.  Parameterization of 

these DBNs was performed using the same method described in Section 6.2.1 for the 

MAP-ms detector; however, because of the reduced dimensionality, 1000 particles were 
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sufficient.  Figure 6.7 shows the false positive and false negative rates of these detectors 

for identifying synthetic anomalies in the December 2-5 data.  From this figure, it is clear 

that coupling the anomaly detection process significantly reduces the false negative rate. 

 

During the period of December 2-5, there were 14 missing measurements in the data 

from the CC009 sensors.  Because the AR_ADET method requires a particular number of 

previous measurements to be available in order to process a new measurement, these 

missing data rendered the AR_ADET detectors for the CC009 sensors unable to classify 

427, 427, 44, and 107 measurements from the windspeed, wind direction, air temperature, 

and barometric pressure data streams, respectively.  On the other hand, since the 

Bayesian anomaly detection methods presented in this chapter do not require any fixed 

set of measurements to be available, the BCI-kf, BCI-rkf, and MAP-ms methods were 

able to classify all of the available measurements. 

 

Figure 6.8 illustrates the time (averaged over five replicates) required by each of the 

Bayesian anomaly detectors and the AR_ADET detector to classify a new measurement.  

Timing was performed on a Suse Linux workstation equipped with AMD dual core 

Opteron 1.8 GHz processors and 7 GB of memory.  Since the AR_ADET detector only 

operates on one data stream at a time, the time plotted in Figure 6.8 is equal to the time 

needed to process a new measurement in a single data stream multiplied by eight (the 

number of data streams concurrently processed by the Bayesian anomaly detectors).  

From this figure, it can be seen that the AR_ADET and BCI-kf methods are the fastest 

(requiring only 0.004 and 0.002 seconds, respectively), followed by the BCI-rkf and the 
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MAP-ms methods.  The MAP-ms-1k detector has a speed nearly equivalent to the BCI-

rkf method (~0.6 sec.); however, as described above, in order to match the performance 

of the BCI-rkf method, the MAP-ms method must use 50,000 particles, requiring 

approximately 30 sec. per measurement.  As expected, the MAP-ms method scales 

linearly with the number of particles used in the Rao-Blackwellized particle filter.  This 

result is illustrated in Figure 6.9.  Since the measurement frequency of the sensors 

considered in this study is two minutes, all of the anomaly detection methods are quite 

viable. 

 

6.2.3 Detection of Observed Anomalies 

The synthetic anomalies considered in the previous subsection provide a good 

comparison of the different methods.  This subsection will describe how the MAP-ms-

50k method, which performed best on the synthetic anomalies, performs on two real data 

Figure 6.7: Comparison of uncoupled and coupled MAP-ms anomaly detection 

methods for classifying transient synthetic anomalies in the windspeed data. 
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anomalies observed within the December meteorological data.  The first anomalous event 

occurs around midnight on December 16.  The anomalous measurements caused by this 

event were first identified by the anomaly detectors developed in this study and 

subsequently brought to the attention of the data managers, who suggested that the 

anomalous data were errors caused by the failure of the CC009 barometer.  The second 

anomalous event, which the SERF data managers attributed to the arrival of a storm front, 

occurs around 04:00 on December 1. 

 

Figures 6.10 and 6.11 show a 24-hour segment of data spanning from 12:00 December 15 

through 12:00 December 16, from the CC003 and CC009 detectors, respectively.  From 

Figure 6.8: Time required by AR_ADET, BCI-kf, BCI-rkf, and MAP-ms methods to 

evaluate a new measurement vector.  Times are averaged over five replicates. 
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these figures, it can be seen that the CC003 wind direction sensor goes offline at 

approximately 19:30 December 15 and that all the CC009 sensors go offline at 

approximately 06:00 December 16.  Furthermore, the CC009 barometer reports a large 

transient deviation at 21:00 December 15, as well as a rapid decrease followed by a rapid 

increase of pressure starting at 02:00 December 15 and continuing until the sensor goes 

offline.  This behavior, according to the SERF data managers, is indicative of a barometer 

failure on platform CC009.  Further evidence that this event was caused by a sensor 

failure, rather than by a system anomaly, is found by considering the behavior of the 

CC003 barometer, which does not echo the behavior of the CC009 barometer.  A similar 

Figure 6.9: Scale up of MAP-ms method, with respect to the number of particles 

used in the Rao-Blackwellized particle filter.  The error bars indicate one standard 

deviation, and the dashed line indicates the linear least squares regression of the 

points (r2=1). 
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event to this one also occurred at approximately 09:00 on October 2.  Neither of these 

events was identified during SERF’s manual QA/QC regimen, but both were identified 

by all three of the detection methods presented in this chapter during preliminary work. 

 

Figures 6.12 and 6.13 show the MAP-ms-50k classification of the meteorological data 

from 12:00 December 15 to 12:00 December 16 from the CC003 and CC009 detectors, 

respectively.  These figures show that the MAP-ms detector can effectively identify the 

anomalous measurements caused by the CC009 barometer failure.  This result indicates 

that the assumption of independence used in the anomaly definition of the MAP-ms 

method does not adversely affect the detector’s ability to identify persistent failures.  The 

assumption of independence does, however, cause the detector to classify a couple of 

CC009 barometric pressure data points at approximately 03:00 as normal, because these 

data fall into the expected range of the barometric pressure, given previous CC009 

measurements and the current CC003 measurement.  These figures also show that the 

detector makes only a few false positive classifications (i.e. normal data classified as 

anomalous) on the data, though it does appear that the false positive rate of the CC009 

wind direction data has increased slightly from what was expected, given the results of 

Section 6.2.2.  Further inspection reveals that this slight increase in false positive rate 

occurs after the wind direction sensor on the other platform (CC003) has gone offline and 

after the barometer on the same platform (CC009) has begun malfunctioning.  These 

sensor failures, however, do not appear to increase the false positive rate in the other 

seven data streams; thus, since these failures only resulted in a marginal increase in the 

number of false positives on one data stream, this method appears to be robust to the 
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Figure 6.10: December 15-16, 2007 sensor measurements from platform CC003. 
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Figure 6.11: December 15-16, 2007 sensor measurements from platform CC009.  

These data show the effects of a barometer failure at approximately 02:00. 
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Figure 6.12: Classification of the December 15-16, 2007 sensor measurements 

from platform CC003 by the MAP-ms-50k detector. 
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Figure 6.13: Classification of the December 15-16, 2007 sensor measurements from 

platform CC009 by the MAP-ms-50k detector. 
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failure of up to two sensors for this case study. Though the results are not shown, the 

MAP-ms detector with 1k, 10k, and 100k particles also exhibited behavior similar to that 

shown in Figures 6.12 and 6.13, as did the BCI-rkf detector. 

 

Figures 6.14 and 6.15 show a 24-hour segment of data corresponding to December 1 

from the CC003 and CC009 detectors, respectively.  From these figures, it can be seen 

that at approximately 03:40, the windspeed increases dramatically (maximum rate of 

change of approximately 15kt over 2 minutes), the wind direction changes from southerly 

to northerly, the temperature drops dramatically (maximum rate of change of 

approximately 5º C over 2 minutes), and the barometer rises.  Furthermore, the 

corresponding sensors on both sensor platforms report similar observations.  This 

behavior, according to the SERF data managers, is indicative of the arrival of a severe 

storm front (an infrequent event). 

 

Figures 6.16 and 6.17 show the MAP-ms-50k classification of the meteorological data 

from December 1 from the CC003 and CC009 detectors, respectively.  These figures 

show that the MAP-ms detector identifies data corresponding to the severe changes in the 

windspeed and temperature as anomalous.  This result indicates that the anomaly 

detectors are not only able to identify anomalies caused by sensor failures but also those 

caused by infrequent system behaviors.  These figures also show that the MAP-ms 

detector behaves differently on the windspeed data than on the temperature data.  

Following the large change in windspeed, the MAP-ms detector quickly returns to 

classifying the majority of the windspeed data as normal; however, it continues to 
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classify data as anomalous for approximately 12 hours following the initial large increase 

in windspeed, at a rate higher than the expected false positive rate.  Following the initial 

windspeed increase, the windspeed variability is higher than usual (as should be expected 

during a storm), and the data that are classified as anomalous appear to represent more 

extreme deviations from the general windspeed pattern than the data that are classified as 

non-anomalous.  Following the large drop in temperature, however, the MAP-ms detector 

does not return to classifying the temperature measurements as non-anomalous for 

approximately five hours.  This difference in behavior is related to the state transition 

model used by the MAP-ms detector, as well as the assumption in the MAP-ms method 

that the anomalies are independent in time.  Since, in general, the historical data indicate 

that the windspeed changes more rapidly than the temperature, the MAP-ms detector 

requires more evidence (in the form of measurements) in order to change its belief state 

about the air temperature than it requires to change its belief state about the windspeed.  

Once the belief state of the MAP-ms detector has changed to reflect the decrease in 

temperature caused by the storm, it ceases to classify new measurements as anomalous 

because, following the initial decrease in temperature, the observed air temperature does 

not exhibit higher variability than usual.  On the other hand, after the initial increase in 

windspeed, the variability of the windspeed remains larger than usual; thus, even though 

the MAP-ms detector quickly reflects the increased windspeed, it continues to classify 

data that exhibit large deviations from the general wind pattern as anomalous.  If the 

MAP-ms method had assumed that the anomalies were correlated in time, rather than 

time independent, the detector would have continued to classify the windspeed and 

temperature data as anomalous for a longer period of time following the initial 
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Figure 6.14: December 1, 2007 sensor measurements from platform CC003. 
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Figure 6.15: December 1, 2007 sensor measurements from platform CC009. 
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Figure 6.16: Classification of the December 1, 2007 sensor measurements from 

platform CC003 by the MAP-ms-50k detector. 
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Figure 6.17: Classification of the December 15-16, 2007 sensor measurements from 

platform CC009 by the MAP-ms-50k detector. 
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increase/decrease than was observed in Figure 6.16 and 6.17.  Though the results are not 

shown, the MAP-ms detector with 1k, 10k, and 100k particles also exhibited behavior 

similar to that shown in Figures 6.16 and 6.17, as did the BCI-rfk detector. 

 

6.3 Discussion 

The previous section demonstrated that the BCI-rkf and MAP-ms anomaly detection 

methods developed in this study can reliably identify anomalies in the SERF 

meteorological data (windspeed, wind direction, air temperature, and barometric 

pressure) collected at two spatial locations within Corpus Christi Bay, despite the 

employment of DBNs with linear system transition models.  Although DBNs exist that 

can address non-linear dynamics directly, simple data transformations can be sufficient to 

allow the use of filtering algorithms like robust Kalman filtering or Rao-Blackwellized 

particle filtering, which achieve significant computational economy through the use of 

linear transition models.  For example, recall that the wind direction variable was 

transformed into two variables that varied smoothly between -1 and 1 by calculating the 

cosine and sine of the wind direction.  Because of the narrow range over which these 

transformed variables vary, and because of the relationship between them, these variables 

are themselves non-linear.  However, the case study demonstrates that DBNs using a 

linear transition model were successful at performing anomaly detection on the 

transformed wind direction.  This result suggests that these methods can address sensors 

measuring smoothly varying data, regardless of whether the process is linear or non-

linear.  For highly non-linear processes, however, transformations that project the data 

into a higher dimensional space, in which it behaves linearly, should be considered.  For 
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example, if the process behaves quadratically, then a new state variable and 

corresponding measurement, which represents the square of the process state variable, 

could be added.   

 

For processes whose measurements do not vary smoothly, more complex DBNs should 

be explored.  One important example of a process whose measurements do not vary 

smoothly is rainfall, since rain often starts suddenly.  Because of the binary nature of 

rainfall modes (i.e. raining/not raining), a DBN that explicitly models these modes should 

be used.  Such a model would also require indicators of when the mode would change 

(e.g. Doppler radar measurements).   

 

For this case study, the BCI-rkf and MAP-ms anomaly detectors were able to evaluate 

new measurements more quickly than the measurement frequency of the sensors, so they 

can be used to detect anomalies in real time.  Because other sensor arrays on which the 

anomaly detectors developed in this study could be deployed may contain substantially 

more sensors than the Corpus Christi Bay meteorological sensor array, and because 

additional sensors could always be added to any existing array, it is valuable to consider 

how the time complexity of the anomaly detection methods would scale as a function of 

the number of sensors.  Since robust Kalman filtering and Rao-Blackwellized particle 

filtering have commonalities with Kalman filtering, the analysis will begin with Kalman 

filtering.  Assuming that there are n sensors, each measuring one process variable, and 

that each DBN state variable corresponds to one of the n sensor measurements, the 

system state covariance matrix (matrix Σ in Equation 2.3) and the measurement 
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covariance matrix (matrix R in Equation 2.3) will have dimensions nxn.  Propagating the 

state distribution forward to the next measurement time and updating for the new 

measurements via Equation 2.3 requires a finite number of matrix multiplications and 

inversions of nxn matrices.  Using the Coppersmith-Winograd algorithm, each 

multiplication or inversion is an O(n2.376) process (Coppersmith & Winograd 1990); thus, 

the time complexity of the BCI-kf detector will scale approximately with the square of 

the number of sensors.  As discussed in Section 2.5.2, robust Kalman filtering is basically 

a weighted average of k Kalman filters, where k is the number of Gaussian components.  

Since the number of Gaussian components of the BCI-rkf detector is related to the 

number of sensors as 2n, the BCI-rkf detector will scale as O(2nn2.376).  As discussed in 

Section 2.5.3, the Rao-Blackwellized particle filter is essentially a population of p 

Kalman filters, where p is the number of particles; thus, the MAP-ms detector will scale 

as O(pn2.376).  As discussed in the previous section, the upper limit for p is inversely 

proportional to the frequency of the least likely measurement status, though to achieve a 

performance similar to that of the BCI-rkf method, the number of particles, p, needs to be 

much larger than 2n.  These results suggest that p increases faster that an exponential 

function of the number of sensors.   

 

From this analysis, it appears that the time complexity of both the BCI-rkf and MAP-ms 

detectors scales faster than an exponential function of the number of sensors, thus 

suggesting that these methods would be intractable for a very large number of sensors.  

However, this analysis assumes that all of the sensor data streams modeled by the DBNs 

are highly correlated, thus requiring a fully-coupled model of the processes being 
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measured.  For processes that are marginally correlated, however, a fully-coupled model 

would not be necessary.  Decoupling weakly correlated processes within the DBN 

framework does not significantly affect the quality of the DBN model (Boyen and Koller 

1998) and would result in significant computational economy.  

 

Another issue to consider is the effect of different sensor sampling frequencies on the 

anomaly detection algorithms. All of the data considered in the case study represent two-

minute averages of the processes being measured.  Compared to the one-second averaged 

data considered in Chapter 5, these data have higher variability between chronologically 

sequential measurements.  Thus, as the averaging interval or temporal support increases, 

it is expected that the data variability will also increase.  Furthermore, some sensor 

measurements, like those considered in this study, are time averages, while other sensors 

(e.g. radar) make point measurements.  Thus, care must be exercised when modeling 

sensors operating at different measurement frequencies or sensors measuring both time-

averaged and point data.   

 

One approach to incorporating sensors with different measurement support is to ignore 

the support of the measurements.  In this method, the greatest common factor of the 

different measurement frequencies is used as the measurement frequency of the DBN, 

and observations for the measurements are only available when the sensors actually 

report measurements.  For example, if there are two sensors, one with a two- and one 

with a four-minute measurement frequency, then the DBN would be set up such that its 

time slices occur every two minutes.  For the first sensor, a measurement would be 
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available at every DBN time slice, while for the second sensor, a measurement would be 

available at every other DBN time slice.  This method would be most effective at 

merging sensors with similar measurement support such as data streams containing only 

point measurements or a combination of point measurements and measurements averaged 

over a small interval.  Since this method does not account for the measurement support, it 

may be undesirable for merging data from sensors with widely varying averaging 

intervals.  In this case hierarchal DBNs (Murphy 2002) may be helpful.  Hierarchal 

DBNs have a graphical structure that represents different time granularities.  In the 

example of two sensors operating at frequencies of two and four minutes, respectively, 

the DBN would expect two measurements of the two-minute sensor for every 

measurement of the four-minute sensor.  The limitation of using a hierarchal DBN for 

real-time anomaly detection is that classification of recent measurements would occur at 

the frequency of the least frequent sensors.  Using the example above, classification of 

the first of the two-minute measurements would have to wait until the four-minute 

measurement was taken.  Detection could still take place in near-real-time if the least 

frequent measurement interval was reasonably short (e.g. on the order of hours). 

 

The Bayesian framework of the anomaly detection methods presented in this chapter also 

renders them well-suited for concurrently processing multiple non-stationary data streams 

that may contain many missing values.  Since these methods consider multiple correlated 

data streams at the same time (unlike the anomaly detection methods suggested in 

Chapter 5), they can process data immediately following one or more missing values in a 

particular data stream, thus giving them an advantage over the detection methods 
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presented in Chapter 5.  Furthermore, information from other sensors improves the 

classification accuracy of the detectors and may be instrumental in identifying certain 

types of anomalies, such as those caused by the slow drift of one sensor.  Coupling the 

detection process, however, increases the computational burden by increasing the 

dimensionality of the state distribution that must be propagated from one measurement 

interval to the next.  For this reason, it may be desirable to decouple marginally 

correlated processes to decrease the computational demand, especially when the number 

of sensors becomes large. 

 

The performance of the anomaly detectors can also be used to guide expansion of the 

existing sensor array or even to design new sensor arrays.  Since the detectors appear to 

be sensitive to the inclusion of highly correlated data (e.g. data from the same type of 

sensor at a different spatial location), data streams in which anomalies are more difficult 

to detect likely contain information that is not well described by information in the other 

sensor data streams, and the sensor array would benefit from the addition of a new sensor 

in the same spatial region that measures a similar process. For example, consider a sensor 

array composed of a single windspeed sensor on platform CC003.  Figure 6.7 shows that 

the false negative rate of the detector operating on this array is high (5%), indicating that 

this array provides insufficient information to describe the windspeed at platform CC003.  

This result could prompt sensor managers to deploy a sensor that collects data correlated 

with the CC003 windspeed—such as the windspeed sensor on platform CC009.  As 

demonstrated in Figure 6.7, the anomaly detector operating on the resulting array 

composed of two windspeed sensors at CC003 and CC009 has significantly fewer false 
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negatives, indicating that the new array more robustly measures the windspeed at CC003.  

A quick comparison with the detector operating on the CC009 windspeed data alone 

indicates that the array containing both sensors more robustly measures the windspeed at 

platform CC009 as well.  

 

The anomaly detectors may also be useful for helping researchers determine where to 

locate new sensors in the environment.  To accomplish this goal, the DBN employed by 

the anomaly detector would first be used to create forecasts of the system state at a future 

time.  Then an interpolation of these forecasts and uncertainty estimate (e.g., using 

kriging or cross-validation) over the spatial area of interest (in this case Corpus Christi 

Bay) would be performed.  This process would provide a measure of the uncertainty in 

the spatial estimates that could then be used to identify locations within the system where 

new sensor platforms should be considered. 

 

Because DBNs do not require that the processes they model be stationary, but only that 

the process dynamics be stationary, the DBNs employed by the BCI and MAP-ms 

detectors would only have to be retrained if the dynamics of the system were to change.  

While it is unlikely that system dynamics will change quickly, periodic re-

parameterization of the DBN may be desirable, so that new data streams or new 

information about the types of anomalies that may be encountered can be included in the 

DBN.  Parameter learning is somewhat time-consuming, requiring several minutes on a 

RedHat Linux workstation equipped with an Intel Xeon 2.4GHz processor and 1 GB of 

memory.  However, a dual model approach (also suggested in Chapter 5) can be used, in 
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which a new model is trained while the previous model is being used for anomaly 

detection, such that data to be processed do not back up while re-parameterization of the 

DBN is occurring. 

 

The results of the case study indicate that the more complex representation of the system 

used by the MAP-ms method resulted in better performance than the less complex 

representation used by the BCI-rkf method, though this improvement was marginal and 

required a significant increase in computational time.  This result indicates that for the 

meteorological sensors considered in this study, the BCI-rkf method would likely be 

preferable to the MAP-ms method.  However, the DBN framework employed by the 

anomaly detectors can address significantly more complex models of the system 

dynamics than those used here.  For example, a description of system anomalies (i.e. 

infrequent system responses such as a severe storm) can be added to the DBN.  Like the 

measurement anomalies addressed in this study, system anomalies can be represented 

either through a Gaussian mixture model for the system state distribution or through a 

discrete variable indicating whether or not a system anomaly has occurred.  The former 

strategy permits the use of robust Kalman filtering, while the latter requires the use of 

particle filtering.  This modification would aid the detectors in distinguishing between 

anomalies caused by infrequent system responses (like the storm front described in the 

previous section) and those caused by faulty sensors or data transmission errors—a 

valuable distinction for real-time QA/QC.  Additionally, seasonal or diurnal behaviors or 

other behaviors of non-linear dynamics could be incorporated within the DBN through 

the use of discrete state variables indicating the season, time of day, or other “switch” 
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indicating a particular dynamic mode.  For these more complex DBNs, particle filtering 

(e.g. Rao-Blackwellized particle filtering) would be required.  Thus, it may be necessary 

to investigate methods to improve the efficiency of particle filtering, such as variational 

methods, which use a state approximate distribution with a more compact representation 

than conventional particle filters, (Murphy 1999).  

 

6.4 Conclusion 

This chapter presents three Bayesian anomaly detection methods employing DBNs and 

compares the well-known Kalman filter to the robust Kalman filter and the recently 

developed Rao-Blackwellized particle filter, which have not yet found wide application 

in environmental research.  These DBNs were implemented such that they are robust to 

missing values in the sensor data streams by adaptively modifying the filtering method to 

use only the available measurements.  The Bayesian anomaly detection methods perform 

fast, incremental evaluation of data as they become available; can scale up to large 

quantities of data; and require no a priori information, regarding process variables or the 

types of anomalies that may be encountered.  Furthermore, these methods can process 

data from multiple sensors at the same time, and thus, as demonstrated, can be applied to 

a network of heterogeneous sensors. 

 

The value and efficacy of the BCI-kf, BCI-rkf, and MAP-ms anomaly detection methods 

are illustrated using a case study involving eight data streams, including windspeed, wind 

direction, air temperature, and barometric pressure, at two spatial locations within Corpus 

Christi Bay.  In this case study, the performance of these detectors was evaluated using a 
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suite of synthetic and actual data anomalies.  Synthetic anomalies permitted direct 

comparison of the three methods with each other, as well as with the autoregressive data-

driven anomaly detector (AR_ADET) presented in Chapter 5.  This comparison indicated 

that all the methods require less time to evaluate a new measurement than the frequency 

at which the measurements are collected; thus, all the methods are suitable for real-time 

anomaly detection.  Additionally, comparison indicated that the BCI-rkf and MAP-ms 

methods misclassified significantly fewer data points than did the BCI-kf or AR_ADET 

methods.  The BCI-rkf and MAP-ms methods also performed well at identifying 

anomalous data caused by two real anomalous events.  In the first event, one of the 

sensors failed, resulting in corrupted data that manual QA/QC had failed to detect.  The 

second event was caused by the passage of a particularly severe storm front.  The 

detection of both system anomalies, such as the storm front, and measurement anomalies, 

caused by the failing sensors, indicates that even with no a priori information about the 

types of anomalies that could be encountered, the Bayesian anomaly detectors were 

effective at identifying real anomalies in the data. 

 

If anomaly detection were to be incorporated into an adaptive sampling method, then the 

non-specific identification of both types of anomalies would be acceptable (since it is 

often desirable to know under what conditions the sensors fail).  However, if anomaly 

detection were to be incorporated into a real-time QA/QC or into a data cleaning system, 

then identifying both system and measurement anomalies might be undesirable.  Since 

both the Rao-Blackwellized particle filter and the robust Kalman filter could be modified 

to address these types of anomalies, both the BCI-rkf and MAP-ms methods are suitable 
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for this application.  However, given that the particle filter employed in the MAP-ms 

method is capable of filtering more complex DBNs than the robust Kalman filtering 

algorithm used in the BCI-rkf method, the MAP-ms method would be able to address 

more complex systems than would the BCI-rkf method.  This suggests that the MAP-ms 

method may be preferable to the BCI-rkf method for complex environmental systems. 

 

Because both process and measurement anomalies are of interest to researchers, and 

distinguishing the two types of anomaly can be useful in many instances, development of 

detectors capable of making this distinction would clearly be beneficial.  While there are 

existing models (e.g. Koushanfar et al. 2003) that explain how sensor failure affects data, 

the parameters of these models are specific to each deployed sensor, and sufficient 

instances of sensor failure have not been observed to parameterize these models, 

especially for new sensor deployments (such as the Corpus Christi meteorological array).  

Deployment of one of the DBN-based anomaly detectors presented here on a sensor array 

would make possible the accumulation of a labeled set of data corrupted by sensor failure 

that could be used to create better models of sensor failures.  These models could then be 

incorporated into the DBN-based anomaly detector, such that the detector could 

recognize known types of sensor failures.  This feature would be beneficial for suggesting 

remedial action on the sensor, as well as for aiding the detector in discriminating between 

measurement and process anomalies.   
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Chapter 7:  Concluding Remarks 

Understanding and predicting the behavior of large-scale environmental systems is 

necessary for addressing many challenging problems of environmental interest, such as 

(1) the design of groundwater remediation strategies, (2) the development of early 

warning systems for natural disasters, like hurricanes or tsunamis, and (3) the 

understanding of conditions that cause natural events of concern, like hypoxia in the Gulf 

of Mexico.  However, due to issues relating to the scalability of predictive models and the 

unavailability of parameters for these models, it is difficult to apply predictive models to 

large-scale systems.  This research investigates the use of data mining for addressing 

challenging problems of environmental interest related to these two issues. 

 

Data mining employs computational techniques from statistics, machine learning, pattern 

recognition, and other disciplines to extract knowledge from data.  Traditionally, data 

mining has been used by businesses and financial institutions.  Recently, however, it has 

increasingly come to be used in the sciences, to extract information from the large 

quantites of data being generated from experimentation and observation.  In this research, 

data mining was used to address two complex problems of environmental interest: (1) 

upscaling models of solute transport in porous media, and (2) anomaly detection in 

environmental sensor data streams. 

 

Chapter 4 investigated the development of upscaled solute transport models using genetic 

programming (GP), a domain-independent modeling tool that searches the space of 

mathematical equations for one or more equations that describe a set of training data. An 
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upscaling methodology was developed that facilitated both the GP search and the 

implementation of the resulting models. A case study demonstrated this methodology by 

developing vertically-averaged equations of solute transport in perfectly-stratified 

aquifers. The solute flux models developed for the case study were analyzed for 

parsimony and physical meaning, resulting in an upscaled model of the enhanced 

spreading of the solute plume, due to aquifer heterogeneity, as a process that changes 

from predominantly advective to Fickian. This case study not only demonstrates the use 

and efficacy of GP as a tool for developing upscaled solute transport models, but it also 

provides insight into how to approach more realistic multi-dimensional problems with 

this methodology.  

 

Chapter 5 developed a real-time anomaly detection method for environmental data 

streams, which can be used to identify data that deviate from historical patterns. The 

method is based on an autoregressive data-driven model of the data stream and its 

corresponding prediction interval. It performs fast, incremental evaluation of data as it 

becomes available, scales to large quantities of data, and requires no a priori information 

regarding process variables or the types of anomalies that may be encountered. 

Furthermore, this method can be easily deployed on a large heterogeneous sensor 

network. Sixteen instantiations of this method were compared based on their ability to 

identify measurement errors in a windspeed data stream from Corpus Christi, Texas. The 

results indicated that a neural network model of the data stream, coupled with 

replacement of anomalous data points, performs well at identifying erroneous data in that 

data stream. 
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Chapter 6 developed three automated anomaly detection methods that employ dynamic 

Bayesian networks (DBNs).  Unlike the method presented in Chapter 5, these methods 

considered several data streams at once using all of the streams concurrently to perform 

coupled anomaly detection.  Dynamic Bayesian networks are Bayesian networks with 

network topology that evolves over time, adding new state variables to represent the 

system state at the current time.  Filtering (e.g. Kalman filtering or Rao-Blackwellized 

particle filtering) can then be used to infer the expected values of unknown system states, 

as well as the likelihood that a particular sensor measurement is anomalous.  

Measurements with a high likelihood of being anomalous are classified as such.  Like the 

method in Chapter 5, these methods perform fast, incremental evaluation of data as it 

becomes available; scale to large quantities of data; and require no a priori information 

regarding process variables or the types of anomalies that may be encountered.  

Furthermore, these methods can be easily deployed on a large network of heterogeneous 

sensors.  This study investigated these methods’ abilities to identify anomalies in eight 

meteorological data streams from Corpus Christi, Texas, and compared them to the best-

performing method from Chapter 5.  The results indicated that DBN-based detectors, 

using either robust Kalman filtering or Rao-Blackwellized particle filtering, outperform a 

DBN-based detector using Kalman filtering and the autoregressive data-driven anomaly 

detection method of Chapter 5 at identifying synthetic anomalies.  These methods were 

also successful at identifying data anomalies caused by two types of real-world events: 

sensor failure and large storms. 
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The results of this research thus indicate that data mining can be use to improve 

predictive modeling of large-scale systems.  In the future, extension of this work should 

proceed in several directions.  First, although the GP upscaling method presented in 

Chapter 4 is not limited to one-dimensional upscaled models, the case study illustrating 

this method does not address the creation of multi-dimensional upscaled models.  The 

creation of multi-dimensional upscaled models of solute transport using GP will require 

learning a model for a multi-dimensional vector quantity.  Therefore, ensuring that mass 

is conserved will be more difficult than in the one-dimensional case presented here, and 

thus, new objectives may be necessary to guide the GP search.  Furthermore, a method 

should be developed to reduce the observed bias of the correlation coefficient (r2) metric 

for capturing early time behavior. 

 

Second, the quality of DBN model predictions for filling data gaps should be 

evaluatedfurther explored.  Because the DBN model framework allows for the coupling 

of correlated processes, the Bayesian anomaly detectors developed in this study show 

particular potential for the effective prediction of missing measurements, but more 

extensive testing is needed to determine their performance under a suite of sensor 

operating scenarios (e.g. one off-line sensor, multiple off-line sensors, or one or more 

malfunctioning sensors).  With further testing, this feature of the anomaly detectors could 

be very valuable for a real-time QA/QC system that prepares data for real-time 

forecasting.  In this case, when a sensor goes off-line, the anomaly detector would 

provide predictions of the missing measurements in real time to the forecasting system.  
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Third, it was demonstrated that Bayesian anomaly detection methods (i.e BCI-rkf and 

MAP-ms method) presented in Chapter 6 are successful at identifying both transient and 

persistent data anomalies resulting from intentional corruption of data, sensor failure, and 

storm events.  These types of anomalies were identified using a simple anomaly 

description that required no a priori information regarding the types of anomalies that 

would be encountered in the data.  It may be desirable, however, to use more complex 

DBN models that better represent the system being monitored.  Not only would more 

complex models permit higher quality state predictions, but they would also allow the 

anomaly detectors to distinguish between process anomalies (e.g. data anomalies 

resulting from storms) and observation anomalies (e.g. data anomalies resulting from 

sensor or data transmission faults).  For example, Kitagawa (1987) demonstrated that 

using a heavy-tailed distribution (rather than a Gaussian distribution) in the state 

transition model of a DBN improved the accuracy of filtered results when unusually 

abrupt changes in time-series data occurred.  This result suggests that incorporation of a 

non-Gaussian system dynamics model may aid the Bayesian anomaly detectors in 

distinguishing between process and observation anomalies.  Parameterizing these models, 

however, will require some a priori information regarding both the anomalous behavior 

of the system being modeled and the types of measurement anomalies that could occur.  

This information would be necessary to permit the anomaly detectors to distinguish 

between system anomalies and measurement anomalies.  Such information could be 

gathered through the deployment of an anomaly detector on an operational sensor 

network with operator feedback on the types of anomalies detected.   
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Another improvement in DBN modeling that should be investigated is the incorporation 

of variables to address behavioral modes, such as seasonal or diurnal variations.  These 

variables could be represented as discrete or continuous.  For example, seasonal behavior 

could be represented (1) discretely, by a variable with four values indicating spring, 

summer, fall, winter, or (2) continuously, by four variables that vary continuously from 0 

to 1, indicating the influence of the seasonal behaviors on the process at a particular 

measurement interval.  Incorporating non-Gaussian process models and behavioral modes 

would improve the performance of the Bayesian fault detectors presented in Chapter 6, 

although it would also increase their computational complexity. 

 

Fourth, the process dynamics modeled by the DBNs in Chapter 6 are data-driven (i.e. 

learned from historical patterns), rather than being derived from an understanding of the 

underlying physics of the process.  For many environmental systems, such physics-based 

models exist.  Thus, the combination and could be incorporated into the DBN framework 

should be explored.  One possible approach would be to create additional observation 

nodes in the DBN for each physics-based model output.  The physics-based model could 

be run external to the DBN, and at every DBN time slice the physics-based model output 

could be considered as a sensor measurement.  This is similar to how sequential data 

assimilation is performed (Madsen & Cañizares 1999), except that the goal would be a 

more accurate filtered state estimate, not calculating error statistics for the physics-based 

model.  Another more complex method of incorporating the process physics would be to 

use the output of a stochastic, physics-based model as a transition model in a particle 

filter. 
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Fifth, the Rao-Blackwellized particle filter used by the MAP-ms anomaly detection 

method achieves significant computational economy over more traditional particle filters 

by decomposing the state variables into two subgroups: (1) variables that can be 

represented as linear Gaussian and (2) variables that cannot.  This decomposition allows 

the Rao-Blackwellized particle filter to exploit the properties of linear Gaussian 

distributions that lead to the well-known Kalman filtering equations.  Since many 

environmental processes are non-Gaussian and exhibit heavy-tailed behavior, the linear 

Gaussian assumption may not be the most suitable for modeling these processes.  In order 

to exploit the Rao-Blackwellization decomposition, as well as accommodate processes 

with heavy-tailed distributions, a modification of the Rao-Blackwellized particle filter 

used in Chapter 6 should be explored.  This modification would replace the Gaussian 

distribution of the state variables with a mixture-of-Gaussians distribution; thus, the 

robust Kalman filtering equations can be used to track the continuous state variables.  

This modified Rao-Blackwellized particle filter would still be significantly more efficient 

than traditional particle filtering (because there is a closed form representation of the 

distribution of the continuous state variables), and it would address the heavy-tailed 

behavior exhibited by environmental processes. 

 

Sixth, since particle filtering will likely be necessary for investigations addressing more 

complex DBNs, methods to improve the efficiency of particle filtering, such as 

hypothesis collapsing, factorial models, and variational methods, should be explored.  In 

hypothesis collapsing (Lerner et al. 2000), similar particles are merged into an aggregate 
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particle, reducing the number of particles.  The set of aggregate particles that results from 

hypothesis collapsing retains particles that are sampling low probability events (e.g. 

multiple sensor failures), while reducing the overall number of particles needed to 

sufficiently characterize a DBN’s belief state.  Factorial models (Boyen & Koller 1998, 

Ghahramani & Jordan 1997) reduce the dimensionality of the belief state of a DBN by 

decoupling weakly correlated processes, thus improving the efficiency of filtering.  

Errors associated with decoupling weakly correlated processes have been shown by 

Boyen and Koller (1998) to diminish over time; thus, the resulting approximation is 

stable.  Boyen and Koller (1998) have also suggested that the strong assumption of 

complete independence can be relaxed to an assumption of conditional independence 

with little loss of computational economy.  Variational methods (Jordan et al. 1999, 

Murphy 1999) use additional parameters, referred to as variational parameters, to 

represent the belief state of a DBN more compactly.  Thus, not only can variational 

methods be used to decouple correlated processes into independent sub-processes (similar 

to factorial models), but they can also be used to improve model predictions (based on the 

Gaussian assumption) for non-Gaussian processes.  Increasing the efficiency of particle 

filters through the use of these methods would permit the MAP-ms method to address 

data from a large number of sensors, as well as measurements of processes that are both 

non-linear and non-Gaussian in real time. 

 

Finally, the BCI-rkf and MAP-ms anomaly detectors should be deployed on an 

operational environmental sensor network.  This task would not only help to thoroughly 

evaluate the detectors’ performance over a long test period, but it would also aid 
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administrators by improving the quality of the collected data , since these detectors 

identified anomalous data caused by sensor failures that were not detected through 

manual QA/QC.  Finally, only through long-term deployment of the method can 

information necessary to improve the detectors’ performance be gathered.  Such 

information would include descriptions of how different sensors behave under normal 

and abnormal operating conditions, which could be used to help parameterize DBNs such 

that they could distinguish between system and process anomalies or recognize known 

sensor failures, which would allow corrective action to be suggested. 

 

This research has demonstrated the promise of emerging data mining methods for 

addressing challenging environmental systems problems.  These methods are capable of 

finding patterns in data regarding complex systems that can be used to create models that 

provide quick and accurate forecasts of the system.  Some of these models are expressed 

in a syntax that researchers can understand, and thus, can be can be analyzed for 

information regarding the underlying processes that generated the data.  This information 

can lead to new understandings of the physical processes being modeled.  While data 

mining requires large quantities of high-quality data, these data are becoming 

increasingly available through the deployment of sensors into the environment.  

Furthermore, because the computational expense of data mining increases with the 

expressivity of the model being generated and with the number of features in the data set 

(a phenomenon referred to as the “curse of dimensionality”), it is often necessary to 

select only salient features and to limit the model’s expressivity.  However, as 

demonstrated in this dissertation, data transformations often can be used to reduce a 
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problem’s dimensionality and facilitate the application of data mining methods to 

problems of environmental interest. 
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