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Abstract

Recently, there has been increased interest in nitrate contamination of ground-
water in the Midwest because of its link to surface water eutrophication,
especially in the Gulf of Mexico. The vast majority of this nitrate is the
product of biologically mediated transformation of fertilizers containing am-
monia, occurring in the vadose zone of agricultural fields. For this rea-
son, it is imperative that mathematical models, which can serve as use-
ful tools to evaluate both the impact of agricultural fertilizer applications
and nutrient-reducing management practices, are able to specifically ad-
dress transport in the vadose zone. This thesis presents the development
of a three-dimensional, explicit numerical model to simulate the movement
and transformation of nitrogen species through the subsurface on the scale
of an individual farm plot. At this scale, nitrogen fate and transport is con-
trolled by a complex coupling of hydrologic, agricultural and biogeochemical
processes. The nitrogen model is a component of a larger modeling effort
that focuses upon conditions found in agricultural fields in Illinois. These
conditions include non-uniform, multi-dimensional, transient flow in both
saturated and unsaturated zones, geometrically complex networks of tile
drains, coupled surface-subsurface-tile flow, and dynamic levels of dissolved
oxygen in the soil profile. The advection-dispersion-reaction equation is
solved using an operator-splitting approach, which is a flexible and straight-
forward strategy. Advection is modeled using a total variation diminishing
scheme, dispersion is modeled using an alternating direction explicit method,
and reactions are modeled using rate law equations. The model’s stability
and accuracy are evaluated and discussed. The model is applied to two
scenarios for a hypothetical two-dimensional section containing a single tile
and a drainage channel. The first scenario uses steady-state flow conditions
and demonstrates the ability of the model to predict the effect of variable
dissolved oxygen concentrations on nitrate in the subsurface. The second
scenario uses transient flow conditions, in response to actual rainfall, and
demonstrates the ability of the model to predict solute breakthrough con-

centrations under these conditions.
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Chapter 1

Introduction

1.1 Background Information

Nitrogen pollution affects many aspects of the environment. In drinking
water supplies, nitrogen species have been linked to methemoglobinemia in
babies, and to non-Hodgkin’s lymphoma (David and Gentry, 2000; Ward
et al., 1996). Nitrous oxide (N2O), a by-product of microbial degradation
of nitrate, contributes to the greenhouse effect and global warming (Korom,
1992). However, it is the effect of nitrogen pollution on surface water ecosys-
tems that is the most apparent. The link between nonpoint nitrogen sources
and nitrogen contamination of surface water leading to eutrophication, toxic
algal blooms, and hypoxia is well known ( Carpenter et al., 1998). One of the
most highly publicized instances of these results is the summertime appear-
ance of a hypoxic zone in the Gulf of Mexico. The occurrence of this zone is
not merely the result of local practices, but rather the result of practices oc-
curring throughout the entire Mississippi-Atchafalaya River Basin (MARB).
In fact, Goolsby et al. (1999) estimate that 35% of the entire nitrate flux to
the Gulf of Mexico is attributable to the states of Iowa and Illinois, states
that account for only 9% of the land area of the entire MARB. This finding
confirms the need for better nitrogen management strategies in these states.
Based on their findings that 84% of the nitrate contributed to the Missis-
sippi river by the state of Illinois comes from agricultural sources, David and
Gentry (2000) suggest that no plan to reduce Illinois’ nitrate contribution
will be successful without addressing agricultural nitrogen inputs.
Agricultural fertilizers and nitrogen fixing crops, such as soybeans, are
used to maximize crop yield. Therefore, uninformed regulations could at
best be inefficient at reducing the nitrogen problems, and at worst be detri-
mental to the financial viability of the state’s farmers. For this reason it is

necessary for regulators to have a tool to help farm managers find methods



to reduce the amount of nitrogen lost from the fields. This would reduce
both the farm managers’ annual expenditures on fertilizer and the nitro-
gen input to surface water. Such a tool would have to address the specific
conditions encountered on a typical Illinois field.

It has been long understood that ammonia-based fertilizers are degraded
by soil microorganisms into nitrate (NOj3 ) under oxic conditions, and further
degraded by different soil microorganisms into gaseous nitrogen (N3) and ni-
trous oxide (N2O) under anoxic conditions. These processes are termed ni-
trification and denitrification, respectively. In fact, given a large enough soil
system and a long enough residence time, it is possible to see near complete
conversion of ammonia-based fertilizers into gaseous nitrogen products due
to the coupling of nitrification and denitrification (Korom, 1992). However,
in the state of Illinois, the situation is different. Because of a high water
table, farmers in Illinois rely on tile drains in the soil beneath their crops
to lower the water table during rain events and keep the crops from be-
ing flooded. Unfortunately, these tile drains pose a unique problem when it
comes to the subsurface transport of nitrogen species. Since the vadose zone
is largely oxic, much nitrification takes place here, resulting in a high con-
centration of nitrate in the vadose zone. In a regular soil system, the nitrate
would then be transported into the saturated zone, a region of mostly anoxic
conditions, where denitrification could occur. However, because of the tile
drains, the system is short-circuited. Some of the pore water flows directly
from the vadose zone into the tiles, while the rest is routed along shallow
flow paths in the saturated zone to the tile, resulting in a much shorter resi-
dence time than would have occurred if the drains were not there (Goolsby et
al., 1999). Because the tile drains remove water from the soil system before
sufficient time has elapsed for denitrification to occur, all of the nitrate is
not converted into gaseous nitrogen species, and so the drainage water is left
with a high nitrate concentration (Gentry et al., 1998). In fact, this concen-
tration often exceeds the United States Environmental Protection Agency’s
minimum contaminant level (MCL) of 10 mg/L (David et al., 1997). This
drainage water, which has been removed from the soil system where further
denitrification could have taken place, is then deposited in a surface water
system, such as a river, where oxic conditions prevail and little denitrifica-
tion can occur. The flux of nitrate from tile drains has been identified as a
cause of increased nutrient loads in surface water in the region (Logan et al.,
1994; Fausey et al., 1996), which has in turn been cited as a contributing
factor to the hypoxic conditions recently experienced in the Gulf of Mexico
(Rabalais et al., 1991; Turner et al., 1998; David and Gentry, 2000).



In order to evaluate the impacts of agricultural fertilizer application in
Illinois on the Gulf of Mexico, it is important to consider the nitrogen bal-
ance of a typical Illinois farm. Agricultural soils are typically saturated with
nitrogen either by application of an industrial fertilizer or by fixation of at-
mospheric nitrogen by leguminous plants (David and Gentry, 2000; Vitousek
et al., 1997). Once in the soil, some of the nitrogen is stored by plants and
microorganisms, while the rest is lost, either through transport of soluble
nitrogen species into drains or through degradation by soil bacteria (Korom,
1992). Studies have shown the correlation of these two types of losses to the
following parameters: correspondence of a rain event with fertilizer applica-
tion, location of drains, fertilizer application method, type of fertilizer used,
type of crop, type of soil, and soil microbial population; however, there is no
consensus for which of these factors control nitrogen loss (David and Gentry,
2000; Gentry et al., 2000; Vitousek et al., 1997). For this reason, numerical
modeling is an important tool for keeping track of agricultural nitrogen, as

well as other agro-chemicals.

1.2 Existing Models

Given the large number of processes which may occur in the subsurface, and
the numerous methods of modeling these processes, it is not surprising that
numerical models describing the subsurface fate and transport of nitrogen
species in an agricultural setting vary from simplified to complex. This
section offers a brief overview of existing models.

MacQuarrie and Sudicky (2001) developed a model to simulate the move-
ment of nitrogen from septic waste in both the saturated and unsaturated
zones. In this model, the spatial domain is represented in all three di-
mensions and spans both the saturated and unsaturated zones. Flow and
solute transport are considered in both the porous medium and the septic
drains, and the two systems are coupled using superposition. Flow in the
porous medium is governed by a modified version of the Richards equation
(Cooley, 1983; Huyakorn et al., 1984), with either the Brooks-Corey (1964)
or van Genuchten (1980) equations describing the relationship between the
pressure head and moisture content. The coupled equation is solved using
Galerkin’s method for discretization and the GCSTAB ( VanderKwaak et al.,
1995) method for solving sparse matrices. The transport of solute in soil
is governed by the advection-dispersion-reaction (ADRE) equation for the
gas, solid and liquid phases, which is determined from a mass balance on a

unit representative volume of porous media, though the assumption is made



that the solid phase is immobile and that the transport of the gas phase is
controlled by molecular diffusion. The reactions considered in this model
include both biotic and abiotic reactions, modeled using a kinetic approach.
Biologically mediated reactions, such as nitrification and denitrification, are
expressed using multiple Monod expressions, while abiotic reactions, such
as those that describe the carbonate system, are expressed using first- or
second-order kinetic models. In order to simplify the problem, the local
equilibrium assumption (LEA) is used to describe the partitioning between
the gas and liquid phases and the solid and liquid phases. Henry’s Law is
used to describe the gas/liquid equilibrium, and a linear isotherm model is
used to describe the solid/liquid equilibrium. To further simplify the prob-
lem, Strang-Splitting, a method of operator-splitting, is used to decouple
the reactions from the transport terms. The transport equation is solved in
the same way as the Richards equation described above, and the reaction
system is solved using VODE, an implicit solver developed by Brown et al.
(1989).

RISK-N, a model developed by Gusman and Marino (1999), is another
model that considers flow and transport in both the saturated and unsat-
urated zones. This model approximates the three-dimensional problem do-
main with a quasi-three-dimensional model domain, where the vertical di-
mension of the problem domain is divided into four regions: the upper root
zone, the lower root zone, the intermediate vadose zone and the saturated
zone. Flow in the model is governed by a one-dimensional flow assumption,
in which the average infiltration into the upper root zone is specified on
a seasonal basis. Percolation from the upper root zone into the lower root
zone is calculated as the infiltration minus the fraction of evapotranspiration
(ET) that occurs in the upper root zone. Percolation from the lower root
zone into the intermediate vadose zone is calculated as the percolation into
this zone minus the remaining portion of ET. Finally, the percolation from
the intermediate vadose zone to the saturated zone is equal to the percola-
tion into to the intermediate vadose zone. Transport in the three regions
of the unsaturated zone is modeled by complete mixing (spatial averaging)
in each zone. In the saturated zone, however, transport is governed by the
two-dimensional, vertically-averaged form of the advection-dispersion equa-
tion, which is solved analytically. This model allows nitrogen to be added
to the system through the application of fertilizer, through wet and dry
deposition, and through the mineralization of crop residue. Dissolution of
solid fertilizer is assumed to be instantaneous. The RISK-N model uses a

constant fraction approach to ammonia volatilization. Depending on the



type of fertilizer applied, between 10% and 20% of the fertilizer volatilizes
before entering the subsurface. Mineralization of nitrogen is modeled as a
first-order process, with rates for both the labile and recalcitrant nitrogen
being calculated as described by Kersebaum and Richter (1991). Both ni-
trification and denitrification are modeled as first-order processes. The rate
for nitrification is a constant, while the rate for denitrification in the unsat-
urated zone is adjusted for the temperature and degree of soil saturation,
following the convention of the CropSyst model described by Marchetti et al.
(1997). Due to uncertainty about the processes that control denitrification
in the unsaturated zone, the rate for this reaction must be specified by the
user. The RISK-N model also has the ability to account for plant uptake,
but the rate for this process must also be specified by the user.

Instead of attempting to explicitly model the spatial domain of a field,
several existing models choose to define a representative two-dimensional,
horizontally-averaged element, from which the three-dimensional problem
domain can be constructed. For fields containing tile drains, the symme-
try of an idealized field containing long, uniformly-spaced, parallel drains is
used to define the representative element. In such a field, symmetry dictates
that hydraulic boundaries parallel to the drains exist halfway between the
drains. Thus, the sides of the element can be defined by hydraulic bound-
aries, and the top can be defined by the soil surface, leaving the model to
define the bottom boundary. Such an element would contain a tile drain
running perpendicular to the plane of the element and intersecting halfway
between the side boundaries.

One of the models that uses this two-dimensional element approach
is presented by Mohanty et al. (1998). The side boundaries of the two-
dimensional element are no-flow boundaries, as described above, while the
bottom boundary is chosen to be impermeable. Flow in the porous medium
is governed by the two-dimensional form of the Richards equation, and the
van Genuchten (1980) expression is used to define the relationship between
pressure head and moisture content, while preferential low through macrop-
ores is governed by piecewise-continuous hydraulic functions. Transport and
reaction of solute are governed by the two-dimensional form of the ADRE,
which considers advective transport of the liquid phase, dispersion of the
liquid and gas phases, and a sink for the tile drain. All reactions considered
by this model are described with an apparent first-order decay chain cou-
pled with the transport equation. The reactions considered occur in all three
phases and include the following: hydrolysis of fertilizer (urea or ammonium

sulphate) in both the solid and aqueous phases, nitrification of both sorbed



and aqueous ammonium ions, volatilization of ammonia, and denitrifica-
tion of aqueous nitrate. Plant uptake is also considered and modeled using
the empirical equations presented by Nelson and MacDonald (1978). Im-
mobilization, mineralization, and biological nitrogen fixation, however, are
ignored. The equations were discretized using the Galerkin finite element
method and solved with the “mass conservative” modified Picard iteration
method (Celia et al., 1990). During the discretization process, the mesh
was adapted to flow conditions to adjust the Peclet and Courant numbers
in each cell in order to minimize numerical oscillation and dispersion. This
resulted in a mesh that is finer near the land surface and tile drain, and
coarser elsewhere.

DRAINMOD-N, developed by Brevé et al. (1994), is another model
that uses the two-dimensional element approach with an impermeable bot-
tom boundary. This model is an extension of DRAINMOD (Skaggs, 1980),
which adds nitrogen balance calculations to the simulation of hydrology of
artificially drained soils in regions with shallow water tables. The considera-
tion of flow in this model, however, is only quasi-two-dimensional, as the flow
in the unsaturated zone is only vertical, while in the saturated zone, flow
is both vertical and lateral. Infiltration, surface-storage, and runoff are cal-
culated using the Green-Ampt equation. When rainfall exceeds infiltration,
it is allowed to accumulate as surface storage, but when the surface storage
reaches a specified depth, the additional rainfall is considered as runoff. The
drainage rate of the tile drain is calculated using Hooghoudt’s steady state
equation as described in Bouwer and von Schilfgaarde (1963). This equation
assumes that the rate of drainage is limited by the rate of groundwater flow,
not the capacity of the drains. Vertical soil water flux in the saturated zone
is defined to drop off linearly from the Hooghoudt’s drainage flux at the wa-
ter table to zero at the bottom boundary. Evapotranspiration is set equal
to potential evapotranspiration (PET) as long as the soil moisture content
is above a specified threshold value, usually a function of the wilting point
moisture content. The moisture content profile is specified by breaking the
soil profile into two sections, the wet zone and the root zone. In the wet
zone, a hydrostatic profile is used. In the root zone, the moisture profile
is uniform and determined by ET. If the upward soil moisture flux from
the saturated zone cannot supply the ET demand, the moisture is taken
from the root zone until the soil moisture content in the root zone reaches
a specified threshold value at which point ET goes to zero. The movement
of solute in the subsurface is modeled using an explicit finite difference ap-

proximation to the ADRE in one dimension in the unsaturated zone and



in two dimensions in the saturated zone. Only nitrate-nitrogen is consid-
ered, as ammonium-nitrogen nitrifies quickly or stays sorbed to the soil, and
thus is not present in drainage water. Fertilizer dissolution is modeled as a
zeroth-order process controlled by the moisture content. Only when the soil
moisture content is above a specified threshold value will this process occur.
The net effect of mineralization and nitrogen immobilization is modeled as a
zeroth-order process, limited by soil moisture content and temperature. The
moisture content limiting factor accounts for the effect of aerobic/anaerobic
conditions on the processes, while the temperature limiting factor accounts
for the effect of temperature on the rate of biologically mediated reactions.
Denitrification is modeled as a first-order process that will only occur when
the soil moisture content is greater than a specified threshold value. The for-
mulation for the mineralization and denitrification processes were presented
by Johnsson et al. (1987). Plant uptake is calculated based on crop data
such as yield, percent nitrogen in crop, time in growing season, and root
depth, as described by Shaffer et al. (1991). Runoff nitrogen concentration
calcuation is based on CREAMS (Knisel, 1980) and takes into account the
nitrogen concentration of the root zone, the nitrogen concentration of the
rain, and the processes of infiltration and extraction. Finally, nitrogen input
by legumes is considered to supply only the difference between the crop ni-
trogen demand and the available nitrate-nitrogen, an assumption validated
by Knisel (1993). The resulting explicit finite difference equation is solved
by an adaptive algorithm that adjusts the time step based on the Courant
number to ensure that the method remains stable.

Bear, Wang, and Shaviv present another model based on a two-dimen-
sional representative element (Bear et al., 1998; Wang et al., 1998). This
model, however, defines the bottom boundary as a flux boundary located
above or at the water table, and does not consider tile drains, though the
side boundaries are still defined as no-flow boundaries. Liquid phase flow
is determined based on a time dependent mass balance that includes a sink
term for crop uptake, as described by Feng and Bar-Yosef (1995). Chemical
transport and reaction of ammonium, organic carbon, oxygen, urea, and
nitrate in the gaseous and aqeous phases are calculated using the ADRE.
Henry’s Law is used to describe partitioning between the gas and aqueous
phases, while adsorption/desorption is described using a linear isotherm.
Nitrogen can be introduced into the subsurface through the application of
ammonia-based fertilizers, urea, or controlled-release nitrogen fertilizers, and
can be removed through crop uptake or reaction. This model considers the

following abiotic reactions: organic nitrogen mineralization, the carbonate



system, and the ammoniacal nitrogen system. Nitrogen mineralization is
treated as a first-order kinetic process, while the other reactions are equilib-
rium reactions. The biotic reactions considered by the model are: nitrifica-
tion, denitrification, urea hydrolysis, and oxygen consumption. Nitrification
is modeled using a second-order kinetic model developed by Neden (1990),
which depends on the ammonium, nitrate, and dissolved oxygen concen-
trations, the pH, and the population of nitrifying bacteria. Denitrification
is treated as a first-order kinetic process that is dependent on the nitrate
concentration, temperature, and dissolved oxygen concentration. The dis-
solved oxygen content scales the rate of the denitrification reaction by the
factor 1 — Cpo when the dissolved oxygen concentration (Cpg) is between
zero and one mg/L, a method suggested by Bachmat and Chetboun (1976).
Urea hydrolysis is modeled by a sum of two Michaelis-Menten equations, as
described by Cabrera and Kissel (1984). Aerobic decay of organic carbon is
modeled as a zeroth-order kinetic process. Because some of these processes
include acid/base reactions, an acid mass balance is computed to keep track
of the pH within the soil. The equations from these processes, as well as
those for gas phase flow, heat transport, root growth, evapotranspiration,
and infiltration are solved simultaneously. The entire model consists of nine
partial differential equations (PDEs) and twenty-two algebraic equations,
and is solved by an implicit finite-difference method on a non-uniform grid.
Picard’s method is used to linearize the non-linear equations for gas and lig-
uid flow. In order to lessen the effect of numerical dispersion on the solution,
a correction factor to the true hydrodynamic dispersion coefficient is used
when the grid Péclet number is larger than 2.0 or the Courant number is
larger than 1.0. To solve the resulting system, either a Preconditioned Con-
jugate Gradient or a Preconditioned Orthomin method is used, depending
on the characteristics of the matrix.

A further simplification of the three-dimensional problem domain is
made by the one-dimensional, vertical-into-the-soil model domain used by
the Root Zone Water Quality Model (RZWQM) (Ahuja et al., 1999). This
model reduces the spatial dimensions in order to incorporate very complex
considerations of geochemical and agricultural processes. In this model, the
porous medium is divided into micro-pore and meso-pore zones, in order
to introduce the effect of preferential flow. The Green-Ampt equation is
used to calculate infiltration, and the Richards equation, along with the
Brooks-Corey relationship (1963), is used to calculate the soil moisture pro-
file. When applied to a tile-drained field, the Hooghoudt steady-state equa-
tion (Bouwer and van Schilfgaarde, 1963) is used to determine the drainage



flux at the center point between two parallel tiles, which is then applied to
the model as a point sink. Evapotranspiration is calculated using a Penman-
Monteith model. The abiotic chemical reactions considered by the RZWQM
are: precipitation and dissolution of lime, gypsum, and gibbsite; ion ex-
change between calcium and sodium, calcium and magnesium, sodium and
ammonium, and calcium and aluminum; and complexing of sodium and
aluminum with organic matter. The biotic chemical reactions considered by
RZWQM are modeled using a kinetic approach, where the rate constant is
a function of the involved microbial population. Rather than tracking dis-
solved oxygen concentration in the soil profile, the RZWQM scales the rate
constants by a factor that is dependent on the degree of saturation of the
soil to account for the effect of aerobic or anaerobic conditions on these reac-
tions. The production of methane gas is modeled as a zeroth-order process.
Denitrification, the aerobic decay of organic matter, and the hydrolysis of
urea are modeled as first-order processes. Nitrification is modeled as a com-
bination of both a zeroth-order process and a first-order process. In addition
to simulating the movement of water and chemicals in the subsurface, the
RZWQM also includes a crop yield model, which includes the processes of
plant uptake of moisture and nitrogen, as well as either the removal of stored
nitrogen from the system when the plants are harvested, or the replacement

of stored nitrogen when the plants die.

1.3 Scope of Thesis

Despite the wide variety of available models, few attempts have been made
to create a combined saturated-unsaturated zone transport model that sim-
ulates nitrogen fate and transport in all three spatial dimensions in an arti-
ficially drained aquifer. In this thesis, a numerical reactive solute transport
model is developed to simulate the fate of nitrogen and related chemical
species through the subsurface under conditions similar to those found on
agricultural fields in Illinois. These conditions include, but are not limited
to: non-uniform, multi-dimensional, transient flow in both the saturated
and unsaturated zones, geometrically complex networks of tile drains, and
dynamic levels of dissolved oxygen in the soil profile. This model uses chem-
ical, soil, and groundwater flow properties to calculate the concentration of
the various solutes, both at node points within the soil volume and at fixed
locations within tile drains that pass through the soil. The flow properties
will be produced by a conjunctive overland-groundwater flow model and will

be transferred to the solute transport model through a dynamic interface



to allow for transient simulations. The conjunctive model is being devel-
oped by other investigators and is based upon the work of Morita and Yen
(2000, 2002). In order to render this model accessible to both farm man-
agers and regulators, special consideration has been made to minimize its

computational demand.
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Chapter 2

Model Development

2.1 Solute Transport Governing Equation

The partial differential equation that describes the fate and transport of a

chemical through a soil system in three dimensions can be written as follows:

00 Clagy | 905CG) Ol _
ot th 8501)
a% (6D ag; ) 10,0, Bx(j)) - a% (0u1iCPy) ) — SaaCly + TRe
(2.1)
where:
C{aq) is the aqueous phase concentration of species p [M/L? water]
Cé”g) is the gas phase concentration of species p [M/L? air]
Cg’s) is the sorbed phase concentration of species p [M /L3 soil]
O is the moisture content of the soil [L? water/L? aquifer]
b, is the gas content of the soil [L3 gas/L? aquifer]
Pb is the bulk density of the soil [M soil/ L? aquifer]
t is time [T]
z is the location vector [L]
Dy is the aqueous phase dispersion tensor [L?/T]
ij is the gas phase diffusion tensor [L2/T]
v; is the pore water velocity [L/T]
qd is the sink term given by the volumetric flow rate into the
tile drain (d) per volume of aquifer [L/T]
YR, is the chemical reaction source or sink term [M/T]

Note that there are two assumptions implicit in the above equation. The

first assumption is that advection is not a significant transport mechanism
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for the gaseous phase. The second assumption is that the sorbed phase
is immobile. Both of these assumptions are made in order to simplify the
right-hand side of Equation (2.1). The local equilibrium assumption is used
to further simplify this equation. It asserts that if it can be assumed that
the time it takes for the three phases to reach equilibrium is short in com-
parison with the transport time scale, then at any time, the concentration of
the gaseous or sorbed phase can be expressed in terms of the aqueous phase
concentration using an equilibrium relationship. In this research, Henry’s
Law, shown in Equation (2.2), and a linear isotherm model, shown in Equa-
tion (2.3), are used to describe the equilibrium between the gaseous and

aqueous phases and the sorbed and aqueous phases, respectively.
(2.2)

where:
mwy is the molecular weight of water [M/mole]

H, is the Henry’s Law coefficient of species p [atmosphere/mole fraction]
R is the ideal gas constant [M*L?/K*mole*T?]
T is the temperature [K]

C{s) = debc{aq) (2.3)

where:

K, is the soil-water partition coefficient [L3/M]

Note that the species index p has been dropped for simplicity.
By using the relationships developed in Equations (2.2) and (2.3), the
three-dimensional advection-dispersion-reaction equation (ADRE) shown in

Equation (2.1) can now be written as follows:
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2.2 Numerical Solution Strategy

There are many different methods that can be used to solve Equation (2.4),

and each has its own particular strengths and weaknesses. Because of the
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desire to make this model accessible to both farm managers and regulators,
it is necessary to limit the number of potential methods to those that require
minimal system resources.

Equation (2.4), shown above, is presented in its three-dimensional form.
One method of reducing system resources is to solve this equation in only
two dimensions and make an approximation for the third dimension. This
approximation usually takes the form of an averaging scheme in the dimen-
sion of least importance. For example, if the flow is mostly horizontal, the
vertical dimension would be averaged, while if the flow is mostly vertical,
one of the horizontal dimensions would be averaged. However, the utility of
these averaged models has been questioned, because dispersion is inherently
a three-dimensional process, and because this sort of averaging can give a
false picture of what is really happening (Burnet and Frind, 1987). Bur-
net and Frind (1987) point out that two-dimensional, vertically-averaged
models give good average concentrations, but miss some peaks, while two-
dimensional, vertical cross-section models predict inflated concentrations.
Because of these limitations, it was decided that the model formulated for
this research should be solved in all three dimensions.

For this reason, it was determined that a resource-efficient solution to
the three-dimensional ADRE must be used. The most efficient methods for
solving the ADRE involve the use of analytical solutions, but unfortunately,
because of the complexity of the partial differential equation, all analytical
solutions require a host of simplifying assumptions which limit their useful-
ness (Leij and Bradford, 1994). For this reason, there is a field of research
devoted to developing numerical approximations for this type of equation.
Of these numerical approximations, one of the most straightforward, and
hence, the most resource-efficient, is the finite difference method (FDM).

The first step in solving an FDM is to define the time and space dis-
cretization. The temporal domain of the model is divided into uniform
sections, or time steps, of duration At. Next, the three-dimensional spa-
tial domain is divided according to a block-centered approach, whereby the
domain is broken into small rectangular volumes, or cells, which have a mea-
surement location, or node, at the center. All the cells in the domain are
the same size and have sides of lengths Az, Ay, and Az, which are specified
by the user. The location of each node is represented by a tripartite index
of the form (i,j,k). The indices i, j, and k refer to the Fortran array refer-
encing paradigm, where i represents the rows, j represents the columns, and
k represents the layers. Therefore, a unit increase in index i represents a Ay

increase in distance along the y-axis, a unit increase in index j represents
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a Az increase in distance along the x-axis, and a unit increase in index k
represents a Az increase in distance along the z-axis. Figure (2.1) shows
this cell referencing system in further detail.

Once the discretization is complete, the partial differential equations
can be written as a truncated Taylor series. For example, the spatial deriva-
tives in the ADRE can be approximated as the difference in property A,
(A; — Ai+1) divided by the spatial distance between location ¢ and location
1 + 1, which is equal to Az, the discretization size in the i direction. Simi-
larly, temporal derivatives can be approximated as the difference in property
A, (A* — A™1) divided by the temporal distance between those two mea-
surements, which is equal to the temporal discretization size At. In this
way, all of the derivative terms in Equation (2.4) can be written in terms
of differences between concentration measurements and discretization sizes.
There are two different ways to express the spatial derivatives in terms of
time. One method is to solve all the spatial derivatives at the new time
level (¢ + 1), while the other method is to solve the spatial derivatives at
the old (¢) time level. These two methods are termed implicit and explicit,
respectively.

Implicit FDMs are usually more robust, but they require more com-
puter memory than explicit FDMs, because they result in a system of linear
equations that must be solved simultaneously. Explicit methods require less
computing resources because the equations they create can be solved inde-
pendently; however, they often have prohibitive stability restrictions on the
time and space discretization. The restriction on the discretization can often

be described with the following two dimensionless ratios:

D, At
Dij = ———— 2.
i = (Ben) (Bay) (25)
d:
o U — v At (2.6)
v A.’BZ )

Equation (2.5) relates the time and space discretization to dispersion, while
Equation (2.6) relates the discretization to advection. For explicit methods,
the size of these parameters is restricted (e.g. in one-dimension, D must
be less than or equal to one-half and &/ must be less than or equal to one)
(see Zheng and Bennett, 1995). However, for implicit methods, these pa-
rameters are unrestricted for stability, though accuracy considerations may
still require some limits. For this reason, it can be seen that an implicit

method would allow a larger time step than an explicit method. However,
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this restriction may not be as prohibitive as it seems. If the time step of the
model is short, it has been shown that the processes of advection, dispersion,
and reaction can be separated and solved sequentially - a method known as
operator splitting (OS) (Valocchi and Malmstead, 1992; Chilakapati et al.,
2000). Thus, each of the processes can be solved by a unique numerical
method well suited to that type of problem. Therefore, in order to satisfy
the requirement that this model use minimal computational resources, an
operator-split, explicit finite difference method was chosen to solve Equation
(2.4).

X
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Columns (j)
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Rows(i) 2
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Figure 2.1: Diagram of relationships between the spatial discretization and
the cell referencing and coordinate axis paradigms.

2.3 Operator Splitting

The ADRE has been described as an “embarrassingly” difficult problem
to solve (Mitchell, 1984, p. 2), because the advection equation is a hyper-
bolic partial differential equation (PDE), while the dispersion equation is a
parabolic PDE. Numerical methods that are good at solving parabolic PDEs

may be unsuitable for solving hyperbolic PDEs, and vice-versa. For exam-
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ple, Ding and Liu (1989) relate cases where parabolic solvers did not perform
well under advection dominated conditions. Solving for chemical reactions
further complicates the solution, because most reactions are described by
highly non-linear systems of ordinary differential equations (ODESs). In order
to incorporate the reaction equations directly into the transport equation,
the ODEs must first be linearized, a very computationally intensive process
(MacQuarrie and Sudicky, 2001). However, to overcome the difficulties of
solving the ADRE, OS can be used to split the processes, and a suitable
numerical method can be chosen for each of the subproblems. Therefore, in-
stead of choosing a numerical method that is the best compromise between
a hyperbolic and parabolic solver, the choice of method for each subproblem
can be based on its ability to solve a particular type of differential equation,
as well as on other criteria, such as stability or memory requirements.

Despite the many benefits of OS, it is important to consider the error
associated with time splitting. Valocchi and Malmstead (1992) report an
inherent mass balance error associated with using OS to time split reactions
when using a continuous mass flux boundary condition; however, they show
that the error decreases with decreasing time step size. Despite errors of
this kind, Chilakapati et al. (2000) suggest that the benefits of having an
accurate solution to each of the three subproblems outweighs the errors that
arise from time splitting. Furthermore, because the time scale of a rain
event is small, the model time step will also have to be small in order to
capture local flow variability. In addition, because each of the transport
subproblems is solved using an explicit FDM, numerical stability will also
depend on the use of a small time step. Therefore, it is expected that the
splitting errors will be small, and that overall, OS will be advantageous to
this research.

The operator split explicit reactive transport model (OSERTM) splits
Equation (2.4) into the following subproblems:

0 mwyHp\ B
ot ((91” + Kapp + 997) C(aq)> =

0

_ (P _ P
o (0u1iC%y) ) — DaaCh,y (27)

16



0 mww p _

15] w g MwyH), aC(paq)
92, ((9 Dy} + 04D} RT ) o (2.8)
0

5 ((0 + Kapy + 0y RT >C(aq)> = %R, (2.9)

where Equation (2.7) represents the advection subproblem, Equation (2.8)

represents the dispersion subproblem, and Equation (2.9) represents the
reaction subproblem. The three subproblems are solved sequentially in the
following order: advection, dispersion, reaction.

The OSERTM uses a different subroutine for each of the three subprob-
lems. This modularity allows for convenient swapping of different numerical
solvers for each of the subproblems. The input to each of the subroutines
is the output from the previous subroutine, so the hierarchy is circular, and
the elapsed time of the simulation increments every cycle before the ad-
vection subproblem is solved. The overall model boundary conditions are
implemented in the advection subroutine. The dispersion subroutine al-
ways has a zero flux boundary condition. Therefore, mass can only enter
or leave the system through advection. This is a reasonable approximation,
considering that transport of solute to a drain in an unconfined aquifer is
most likely advection-dominated. Also, it is clear from Equation (2.7) that
mass is removed by the drain in the advection subroutine. A more complete

description of the model will be given in Chapter 3.

2.4 Advection

The advection equation describes the movement of solute due to the bulk
groundwater flow. As noted in Section 2.2, a finite difference approximation
to the true equation is used. Unfortunately, the behavior of this type of
numerical approximation does not always match that of the true solution.
Numerical dispersion and numerical oscillation are two common cases where
an artifact of the FDM causes the numerical solution to deviate from the
true solution. Numerical dispersion causes the numerical solution to appear
more dispersed than the true solution, while numerical oscillation causes the
numerical solution to oscillate above and below the true solution.
Numerical dispersion is often the result of applying a low-order approx-

imation to an advection-dominated system, but Chilakapati and Yabusaki
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(1999) show that non-uniform flow fields can also cause significant numer-
ical dispersion. Because numerical dispersion causes errors, such as under-
estimation of the time it takes for a solute to reach a measurement point,
overestimation of the time it takes for the maximum concentration of a
continuous source to reach a measurement point, and underestimation of
the maximum concentration to reach a measurement point from a pulse
input, some higher-order FDMs have been proposed, such as the second-
order upwind method. These methods do not show pronounced numerical
dispersion, but they do have the tendency to exhibit numerical oscillation
near the location of a sharp front, resulting in over- and under-shoots of the
maximum concentration near the front. In order to manage the effects of
these mathematical artifacts on the model solution, Harten (1983) suggests
a numerical scheme, called the Total-Variation-Diminishing (TVD) method,
which combines a high-order polynomial interpolation of the concentration
at node points with a flux-limiting function to damp out oscillations.

In the TVD method, the first step to solve the advection equation is to
discretize the PDE shown in Equation (2.7). For simplicity, only the one-
dimensional form of this equation is shown; however, these methods can be
extended to all three spatial dimensions. The discretized advection equation

takes the following form:

1 H H
N ((0;+1+deb+0§“ T ) el (0t+de,,+0_f] T ) Cf) —
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B it H—%Aw i—3 i1 —Equf—H (2.10)

Note that the subscript (aq) and superscript (p) have been dropped from
the concentration term and replaced with a node reference index and a time
reference index, respectively. The second step of the TVD method is ap-
proximating the concentration at the cell boundaries (C;, 1 ). The simplest
TVD method is the first-order upstream method, where C;, 1= C; and
C;_ 1= Gy however, this method exhibits numerical dispersion because
of the low order approximation of the inter-nodal concentrations. There
have been many suggestions for higher-order approximations (see Van Leer,
1974; Roe, 1984; Leonard, 1979; Leonard, 1991). These schemes suggest
that as the order of the approximation increases, so does the accuracy of
the solution. However, Leonard (1991) shows that for all orders, even-order
approximations tend to be inferior to odd-order approximations of similar

order. Conveniently, his third-order approach requires the same 5-point

18



stencil as a second-order method and can be easily solved explicitly. How-
ever, it should be noted that despite their ability to resolve sharp fronts,
explicit TVD methods share the same stability limit as other explicit meth-
ods: U < 1.

In this research, three different TVD methods are considered: a first-
order upwinding scheme, Roe’s Suberbee second-order upwinding scheme
(Roe, 1984), and Leonard’s universal limiter for transient interpolation mod-
eling of the advective transport equations (ULTIMATE) (Leonard, 1991).
Chilakapati et al. (2000) present a parsimonious formulation that allows

these three methods to be specified by the following equations:

1

CL.%:Cz't+§(1_)\i+%)‘lli+%(ci+l_Ci) if V1+%>0
1 :
C§+§ =Ci + 5(1 - )\i+§)‘1’i+%(ci —Ciy1) if V141 <0 (2.11)

where \ = (”“’ALwAt is the Courant number, and ¥ is the flux limiting function,

which can take one of the follwoing forms:

0 first-order upwind

W — maz (0, min(2r, 1), min(r,2)) Roe’s Superbee
max (o,mm (2, o, 2‘”“””&“"“””)) ULTIMATE

(2.12)

where:

_Ci—Cin :
= 701-4_1 —C if Vi+% >0

_ Cipa —Cipa .
T = m if Vi—}-% <0

Using this algorithm, the TVD method can be selected simply by indicating
the form of the flux limiting function.

The advection subproblem uses the velocity at each of the cell faces,
the moisture content in each of the cells, the location and flow rate of any
drains in the model domain, and the porosity and bulk density in each of the
cells to calculate the concentration at each node point in the model domain.
As mentioned previously, the flux boundary condition of the overall model
is implemented in the advection subroutine. This is done by specifying
the chemical mass flux through the boundaries, which is used to calculate

the concentration value just outside the model domain using the following
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relationship:
ot = o (2.13)

"= ]

where:
CL  is the concentration of the ghost node at time t [M/L?]
F is the chemical mass flux per unit area through the boundary [M/L2T)]
6!,v} is the specific discharge of water through the boundary [L/T]

This formulation of the boundary condition places one ghost-node adjacent
to every boundary node in the model domain, as shown in Figure 2.2. It can
be seen, however, that neither Roe’s Superbee nor Leonard’s ULTIMATE
method will work near the domain boundaries, because they require two
nodes upwind and one node downwind of the cell face 7 £ % When too
few nodes are available, regardless of which TVD method is specified by
Equation (2.12), the first-order upwind method, which needs only one node
upwind and one node downwind of cell face i + %, should be used. This
condition is sufficient to avoid any mathematical errors near the bound-
aries, because the existence of ghost nodes ensures that there will always
be one node on either side of the cell face that defines the model’s physical

boundary.

Co

Figure 2.2: Diagram of boundary configuration for advection subproblem.

2.5 Dispersion

The dispersion equation describes the movement of solute associated with
molecular diffusion and mechanical dispersion. Though this equation is
merely an approximation of the microscale interactions that are occurring, it
is commonly accepted as a valid description of the processes on a macroscale
(Zheng and Bennett, 1995). To solve this equation with an FDM, it must
first be discretized. The discretization of the temporal first derivative is

straightforward, while that of the spatial second derivative is more difficult.
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It can be seen that the spatial second derivative is composed of two ma-
jor components: direct-terms (terms where both derivatives are taken with
respect to the same direction) and cross-terms (terms where the two deriva-
tives are taken with respect to different directions). The direct-term in any
arbitrary direction z; can be constructed using the differences between z;
and z;_1 and between zi and zi + 1 as follows:
O pidC — M(Ciﬂ,j,k — Cijk) — D“Zifg,j’k)(ci,j,k —Ci-1,5k)

' (2.14)
where ﬁij = 0, D} + Ongj is the apparent dispersivity. The cross-term

oz, "om  Ax?

7

in any arbitrary directions z; and z; is expressed in terms of differences
between concentrations between diagonally adjacent nodes in the z;, z;

plane, as shown below:

9 5 0C
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To determine the concentrations at the midway points between diagonal
nodes, four nodes must be averaged. For example:
Cijk + Cij+1k + Cipr i1k + Ci+ 1,5,k

Cisljrine = 1 (2.16)

Using this averaging scheme, and collecting like terms, Equation (2.15) can

be rewritten as follows:
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D

i3 (i—%,5,k)
- m (Ci,j+1,k) + Ci—1j+1,k — Cij1k) — Cz'—l,j—l,k) (2.17)

This formulation of the direct- and cross-terms was based on that of Zheng

and Bennett (1995). Now, the entire three-dimensional discretized form of
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the dispersion equation can be seen to be:
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The aqueous phase dispersion coefficient is expressed in the following
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form:
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where ar, arpg, and ary are the longitudinal, transverse horizontal, and
transverse vertical dispersivities, respectively. This formula was presented
by Burnet and Frind (1987) as an approximation of the anisotropic form of
the dispersion tensor defined by Bear and Bachmat (1986). This approxi-
mation is used instead of the true anisotropic form of the equation, because
the anisotropic formula requires five independent dispersivities, a level of
information unlikely to be obtained in a field study.

The gas phase diffusion coefficient is expressed using the Millington and
Quirk (1961) relationship:

7
0,Df; = 992—92 * DY * 8y (2.25)
where Dg is the free air diffusion coefficient [L?/T], n is the porosity, and
d;j is the Kronecker delta.

In order to solve the discretized equation shown in Equation (2.18), a
numerical method must be chosen. As stated earlier, this research consid-
ered only explicit FDMs, thereby limiting the number of available methods
that could be chosen. Most explicit FDMs are very restrictive in their sta-
bility requirements, so a survey of stable explicit methods for solving the
dispersion equation was performed. During this survey, a report by Morita
and Yen was discovered, which compared an alternating difference explicit
(ADE) method presented by Larkin in 1964 to Brian’s ADI method (1964),
the purely ADI method, Barakat and Clark’s ADE method (1966), and a
purely explicit method for solving the three-dimensional Richards equation.
Morita and Yen concluded that the ADE method worked as well as the ADI
method, even though it required shorter time steps. Because of the favorable

performance of the ADE method, it was chosen for this research.

23



Larkin’s ADE method solves the average of an implicit formulation and
an explicit formulation of the dispersion equation, giving it increased sta-
bility without the need to solve simultaneous equations. (This approach is
similar to that of the Crank-Nicholson method.) To illustrate the method,

a simplified one-dimensional version of the dispersion equation will be used.

oC 8 . oC

5= %D”E (2.26)

If this equation were to be solved with a fully implicit method, the concen-
trations in the spatial second derivative would be taken at the new time
level, whereas if the equation were to be solved with a fully explicit method,
these terms would be taken at the old time level. Taking the average of the

two methods results in the following form:

1 (CHt ot Cl+C
At 2 2

A

Az? 2 2

B D;c;c(z—%) Ci—i_l + C; B Citll + Cat;_l (2 27)
Ax? 2 2 ’

To solve this equation explicitly, however, further manipulation is required.

Dzz(ac—i—%) (C;ill + Cgtv—|—1 _ C;_H + C;:.) _

A~

First, two new variables, U and V, are defined as approximations of C. Then

Equation (2.27) can be rewritten in terms of U and V as follows:

1 (U + vt Ul 4+ v}
Kt( 2 2 )

Az? 2 2

B Dmx(z—%) U£+1 + Vzt _ U;itll + th—l (2 28)
Az? 2 2 '

Note that half of all the U and V values are taken at the new time level, and

Dr(wt 1) (VJI% +UL, VL4 Ué) B

~

that there are an equal number of U and V values at both time levels. This
creates a particular pattern vital to Larkin’s ADE method, which will be
described in more detail shortly. Now an approximation of C' can be defined
as the average of both U and V, and the above equation can be split into
two equations, the first containing only U terms and the second containing

only V terms.
Ut 4yt

1
ot =Yt

(2.29)

24



At ﬁt—kl
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t+1 t
yitl _yit Dmm(z—l—l) Dmm(z—l)
S (o) - SRR (e o) e

Note that these equations are complementary in the form of the spatial
second derivative, and that the apparent dispersivity can now be associated
with a difference at a particular time level, and thus can be assigned a time
reference. It can now be seen that both U and V' can be solved explicitly, if
the nodes are solved in a particular order. Equation (2.30) must be solved
in increasing index z, while Equation (2.31) must be solved in decreasing
index z. Though the above example is shown in only one dimension, this
pattern can be extended to three dimensions. By observing the patterns
in Equations (2.30) and (2.31), the following rules can be developed for
expressing the complementary U and V discretizations of the dispersion
equation. First, spatial terms taken at the new time level in U must be taken
at the old time level in V', and vice-versa. Secondly, there must be the same
number of terms taken at each time level in both the U and V formulations.
Finally, the resulting form of U must be able to be solved explicitly in
the opposite direction from which V' can be solved explicitly. Using these

rules, the following complementary forms of the dispersion equation in three
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dimensions can be written as:
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(2.33)

By averaging these complementary discretizations, the resulting equation
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for the concentration at the new time level includes information from all
nodes at both the old and new time levels and can be solved explicitly.

In addition to including more temporal information at each time step
than a fully explicit method, the mixture of implicit and explicit terms
in the U and V discretizations results in increased stability of the overall
method. The report by Morita and Yen, as well as the original publication of
this form of the ADE method by Larkin in 1969, suggests that the stability
of this method is unconditional. Larkin cites a Von Neuman analysis as the
basis for this statement. However, Larkin’s ADE method is based on an
older method by Saul’ev, and Larkin notes that in his 1958 paper, Saul’ev
writes that the ADE method is stable as long as a stability parameter of
the form w = (Az)%/At is greater or equal to one-half. Because of this
discrepancy in the literature, a Von Neuman stability analysis was performed
during the course of this research. The result indicated that the method is
unconditionally stable. However, Von Neuman analyses are only valid away
from the boundaries - an important distinction, because during the research,
it was found that the method of implementing the boundary conditions
greatly affected the stability of the model.

As mentioned previously, the dispersion solver enforces a no-flux bound-
ary around the entire system. The most obvious way to implement this
boundary condition is to define the flux in the direction z through the

boundary face z + % as follows:

A

D

Fo= 3

C:c - Czc:l:l) (2'34)

Therefore, it can be seen that if there is no flux across the boundary between
cells z — 1 and z, then the difference (C%+! — C’fvtll) must be equal to zero.
This information can be directly incorporated into the discretized form of the
dispersion equation by setting this difference in the spatial second derivative
to zero. This results in an abbreviated form of the discretization. For
example, using Equations (2.29), (2.30), and(2.31) if the boundary node
z = 1 is being evaluated, the abbreviated form of the discretizations would

be as follows:

B P+l
Ut — UL oyl Ut Ut 3 0 2.35
At Ag2 \ 2l T Y Ax? (2:39)
P+l Dt
Vit —VE eyl yHHL ) 3 0 (2.36)
At Ag2z \Jetl T Vo Az? |
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However, it can be seen that the U formulation is now fully explicit, while
the V formulation is fully implicit. Therefore, the stability of the U formula-
tion, and thus the resulting formula for C**!, is restricted to discretizations
where D is less than one-half. Note that if the boundary considered had
been between nodes = and z + 1, then the V' formulation would be fully ex-
plicit, and the U form would be fully implicit. Thus, the ADE method does
not offer any advantages over other, less computationally intensive explicit
methods. However, if the boundary conditions are implemented in such a
way as not to remove the mixture of implicit and explicit terms, the method
appears to be more stable. During the course of this research, two different
methods were derived to meet this criterion.

The first method models the zero-flux boundary condition by assigning
concentrations at ghost-nodes outside of the model domain, which are equal
to the value of their neighbors inside the domain. Recall that the boundary
condition requires (C5! — CLT) to equal zero. If node = is located at a
boundary, then this equation can be rewritten as (C} 1! — Cit') = 0 and the
concentration at the ghost-node can be described as CEH = C’;H, where the
subscripts b and ¢ stand for boundary and ghost, respectively. However, the
concentration at the boundary point at the new time level is not known, but
rather is being determined during the current time step. If the assumption
is made that the concentration does not change significantly from one time
level to the next, then the ghost-node concentration can be approximated as
C!. Now the U discretization of the ADE method at the boundary can be

expressed as a fixed concentration (first-type) boundary condition as follows:

~ ~

o P+
U™ — U Vasord) Ut —Ut) -~ (g ) .37)
At Az \Uer1 ~ U Azz \7® ’ '

This equation can be rewritten as:
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the right side of the equation cancel each other, leaving:
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This equation has the same form as Equation (2.35), except that it solves
for Ug"'l implicitly. Therefore, by assigning ghost nodes around the model’s
physical boundaries which are equal to the old time-step concentration at
the boundary node, the Equations (2.29), (2.32), and (2.33) can be used
without modification to solve the dispersion equation. In order to solve the
cross-terms, it will clearly be necessary to define some ghost-nodes that are
not adjacent to boundary-nodes, but instead are adjacent to other ghost
nodes. These nodes occur at the corners and edges of the model domain.
To approximate the concentration at these points, a linear average of all the
adjacent nodes is used.

The second method does not require the definition of ghost nodes, and
thus requires less memory storage than the previously described method.
In this method, whichever discretization (U or V') becomes fully explicit is
changed to a fully implicit equation similar in form to Equation (2.39), using
the assumption that the concentration at the boundary does not change
much with time, and that D!*! ~ Dt For example, Equation

zz(bty) mm(b:l:%)'
(2.35) is rewritten in the following way:

A

Dt DIl
Ubt+1 _ U[;t _ b+% Ut . b+% Ut_|_1 (2 40)
At Ag? \ b1 Ag? \ 7P '

This manipulation removes the ability to solve for U;H explicitly at the
boundary, increasing the stability of the U formulation, and thus, the method
as a whole. Unfortunately, this method of estimating the boundary condi-
tions does not present a computationally efficient method of calculating the
cross-terms. Therefore, in the interest of accelerating the computation, the
cross-terms are neglected at the boundaries.

Both of the above methods for approximating the boundary conditions,
which remove the ability to solve either the U or the V discretization ex-
plicitly, appear to be unconditionally stable, though the second method is
preferable to the first because it requires neither the allocation of the ghost-
node shell around the model’s physical domain, nor the calculations neces-
sary to initialize the ghost nodes. For these reasons, the second method for
approximating the boundary conditions was implemented in the OSERTM,

despite this method’s omission of the cross-terms at the boundary nodes.
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2.6 Reaction

The reaction equation describes the transformation of the chemical species
being tracked as a function of time. In this research, the reactions of interest
are: nitrification, the biological oxidation of the ammonium ion to nitrate;
denitrification, the biological reduction of nitrate to gaseous nitrogen; and
aerobic degradation of soil organic matter (SOM). The chemical equations

that describe these three biologically mediated reactions are:

NH{ +2054q — NO3*+2H' + Hy0 (2.41)
4 2 4 1

CHQO + 3N0§2 — ENQ + gHOOg— + gCOQ(aq) + %HZO (242)

CH0 + Oy — COs9 + Hy0O (2.43)

where nitrification is represented by Equation (2.41), denitrification is rep-
resented by Equation (2.42), and the degredation of SOM is represented by
Equation (2.43). Soil organic matter is assumed to be represented by CHy0O
(MacQuarrie and Sudicky, 2001)

These reactions are the result of complex physical and biological pro-
cesses, and can be modeled a number of different ways. As noted in Section
1.2, these processes are usually described with a kinetic model, where the
rate constant is dependent on a combination of the following factors: the
population of the responsible microorganisms, the concentration of the react-
ing species, and the concentration of any reaction inhibitors. While nitrifi-
cation and SOM consumption are usually modeled as second- and first-order
reactions, respectively, there is some variation in the representation of the
denitrification reaction. The most likely reason for this variation is that
little information is known about the processes involved in denitrification
(Kinzelbach et al., 1990). For example, many models assume that denitri-
fication will never occur if the dissolved oxygen concentration is above 1
mg/L, yet in a review of the state of knowledge of denitrification, Korom
(1992) states that this oxygen limitation is too strict, as there are bacteria
known to denitrify at much higher dissolved oxygen levels.

Multiple Monod-expressions were chosen to calculate the reaction rates
of nitrification, denitrification, and consumption of SOM, because of their
expressive abilities and successful application to the modeling of microbi-
ologically mediated reactions in the sub-surface (MacQuarrie et al., 1990;
Kinzelbach et al., 1991). The general form of a multiple-Monod expression
for the reaction rate is shown in Equation (2.44) (Chen et al., 1992; Essaid
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et al., 1995; MacQuarrie and Sudicky, 2001):

Ra = s X F () | e | |+ | s | PO 249

K¢+ C1] K¢+ Cy m
where:

R, is the rate of reaction a

k& o is the maximum primary substrate utilization rate for
reaction a [M substrate/M biomass/T]

X is the biomass of population m responsible for reaction
a [M biomass/L3]

F(X,,) is a coefficient representing biomass inhibition

C1 — C,, are the aqueous concentrations of the reacting species
[mg/L3 water]

K{ — K are the half-saturation constants for the respective
species [M species L? water]

F(Cr) is a coefficient representing noncompetitive inhibition

The multiple-Monod expression shown above defines the rate of reac-
tion a as the product of the maximum substrate utilization rate and several
functions, called limiting terms, which describe the effects of microbial pop-
ulation dynamics, substrate availability, and non-competitive inhibition. In
this research, however, the term representing the effect of the microbial
population will not be considered for reasons discussed shortly. Each of the
limiting terms vary continuously between zero and one, and describe the
fraction of the maximum substrate utilization rate that can occur under the
specified conditions for the control variable described. For example, if the
ammonium ion concentration is close to zero, the term describing the avail-
ability of the ammonium ion in the multiple-Monod representation of the
rate of nitrification will have a value of close to zero. On the other hand, if
the ammonium ion concentration is large, then the limiting term will have a
value close to one. Thus, it can be seen that the product of all the limiting
terms effectively describes the fraction of the maximum substrate utiliza-
tion rate that can occur, considering the state of the control variables. The
form of the substrate availability limiting term used in this work is generally
accepted, but the form for the non-competitive inhibition limiting term is
subject to some interpretation, based on the nature of the inhibition. For
this work, the only non-competitive inhibition considered was that of dis-
solved oxygen on denitrification. MacQuarrie and Sudicky (2001) suggest a

hyperbolic function for describing the non-competitive inhibition of oxygen
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on denitrification, which takes the following form:

K1(0,) ]

F(CI(OZ)) = [K[(O2) + C02

(2.45)
This function, however, transitions from zero to one very slowly; thus,
much denitrification can take place at high dissolved oxygen concentrations.
Though it is not unusual for some denitrification to occur under oxic con-
ditions, it seemed as if this form of the limiting function allowed too much
to occur. For this reason, the following function for oxygen inhibition of
denitrification, presented by (Hudson, 2001b), was used:

e*k]*Coz

F(C) =2+ (2.46)

1 + e~kr*Co,
where kj is a fitting parameter.

To apply this multiple-Monod model to the processes of nitrification
and denitrification, however, the OSERTM would have to keep track of four
different reacting species and two populations of microorganisms. For this
reason, a couple of simplifying assumptions were made. The first assumption
is that natural organic matter is present in excess in the soil, and thus does
not inhibit denitrification. This effectively reduces the number of modeled
species to three. The second assumption is that both nitrifiers and deni-
trifiers are present in such significant quantities that neither change with
time, nor affect the reaction kinetics. This effectively removes the microbial
population terms from Equation (2.44). These simplifications result in the
following multiple-Monod expressions for the reaction rates of nitrification,
denitrification, and organic matter oxidation (adapted from MacQuarrie and
Sudicky, 2001):

Rt = ks L
nit — nit KNHZ‘ ‘I'CNHZ‘

Co, ]
2.47
|:K02 + 002 ( )

CNO*2 e kr+Co,
Raenit = Kdeni 2 246 —————— 2.48
denit denit KN03*2 i CNO§2 [ 1 +ek1*002:| ( )
Co
Roz = koy | =—F5— 2.49
o = b || (2.49)

These reactions can now be modeled by incorporating their equations into
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Equation (2.9) and forming the following system of ODEs:

NH}
0 (9 + Kg * pp + 0 * mq}%lu’H) C(aq)4
NO2~

5 = NO;Z nit 5 denit
8(0w+Kd*pb+9*mww )002

Two different approaches were investigated to solve this system of equa-
tions. The first approach used a fourth-order Runge-Kutta method to solve
Equation (2.50). However, due to the nonlinearity of these equations, it
was found that this method may require shorter time steps than either the
advection or dispersion equations, thus rendering it an unattractive option.
The second approach approximated each reaction as a first-order kinetic
process. Therefore, the system of ODEs shown in Equation (2.50) can be

rewritten as the following independent equations:

+
80(]:;;)[4 B )‘MtCNHZ' (2 51)
ot (0w + K py + 0y x ™) '
NOZ™
BC( )3 _ AdenitCNng n T (2 52)
Ot (0w + Kok pp+ 0, « moeH) T '
0:
Pta) _ Aoz C0, (2.53)
ot (Hw—I-Kd*pb—i—Og*m%%H)
where A and C are constants expressed as:
1 Co
Anit = —kn; 2
nit nit [KNHZ‘ + CNHZ‘] |:K02 + 002:|
4 1 kr=Co,
Nooir = —kg e -
denit demt5 [KN032 + CN032] [2 * 1+ e—k1*002:|
1 Cyy+
Aoz = —kog [7] — 2kp Akl |: ! ]
K02+Co2 KNHZ'—FCNHZ’ K02—|-002
Tm't _ Rm't

9w+Kd*Pb+eg* mwy H
RT

where the concentrations are taken at the old time level. Equations (2.51),

(2.52), and (2.53) can now be solved by integration, resulting in the following
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equations:

+ Anit At
CNHY = NI (2.54)
-2 NO;?2 mw 2 Aenit At
cNOs = mwN03—2TnitAt +C,_® ke No3 M (2.55)
co? = CP2 % mwosAnitht (2.56)

These three equations can be solved independently. Thus the reaction sys-
tem is no longer being solved simultaneously, but as will be shown in Sec-
tion 3.5, these equations still give a good approximation to the true system of
ODEs shown in Equation (2.50). Because this method’s accuracy is less de-
pendent on time step size, it is preferred over the fourth-order Runge-Kutta
method.

2.7 Summary

In this chapter, finite difference modeling of the ADRE was reviewed. The
OS paradigm was presented as a method to simplify the numerical solution
to the ADRE by separating the advection, dispersion, and reaction sub-
problems. Finally, unique numerical methods for solving these subproblems
were presented, along with information about their stability. The ULTI-
MATE TVD method was chosen for the advection subproblem, because of
its resistance to numerical dispersion and oscillation. The ADE method
was chosen for the dispersion subproblem, because of its stable nature. A
pseudo-analytical approximation to the reaction system was chosen, because
of its independence of time step size. In the next chapter, the implementa-
tion of the OSERTM will be described, and the performance of the model

will be compared to analytical solutions for some classic test problems.
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Chapter 3

Program Description and
Verification

3.1 Model Overview

This chapter will describe how the numerical methods described in Chapter 2
are joined together to create the OSERTM, as well as give a brief description
of the required input data and the output data. Then the performance of
the model on a number of test problems will be described. Before beginning,
however, it is instructive to describe, in generic terms, the physical features
of an agricultural field to which this model may be applied. This description
will help the reader to understand naming conventions used in the input
files described in Section 3.2, as well as the usefulness of certain output files
described in Section 3.3.

A schematic of an idealized field is depicted in Figure 3.1. This field
is adjacent to a drainage ditch and contains two tile lines. The drainage
ditch defines the right side boundary of the field and runs the length of
that side. In order to identify each tile line in the model domain, the tiles
are each assigned a unique tile number. Tile 1 runs perpendicular to the
ditch and intersects tile 2, which runs parallel to the ditch. In order to
apply the OSERTM to this field, the physical domain would be discretized
according to the naming and directional conventions shown in Figure 2.1.
It is conceivable that a tile line may span multiple grid cells. In this case
it is necessary to divide the tile line into segments, so that each segment
exists in only one cell. Each tile segment is then given a segment number
beginning with 1. For example, tile 1 in Figure 3.1, may be divided into
segments, as shown in Figure 3.2. As a result of these naming conventions,
each tile segment in a field can be uniquely identified by the combination of

its tile number and segment number.
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Figure 3.1: Schematic of a generic, idealized agricultural field indicating
drain numbering conventions.

Figure 3.2: Schematic of the tile-segment numbering conventions used in
the OSERTM.
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The OSERTM code was written in Fortran 90 and was designed with
modularity as a key feature, so that the model would be able to support
many different numerical solvers for the advection, dispersion, and reaction
subproblems described in Chapter 2. For this reason, all calculations are per-
formed in subroutines called from the program file, drainmod3d.f90, which
will be referred to as Main. The Main program file allocates and initializes
all of the program parameters and global variables, invokes subroutines to
read the temporal hydrologic data and solve the three subproblems, and
writes the output files. A flow chart representation of the Main program can
be seen in Figure 3.3, and will serve to clarify the program description that

will be given in the following three sections.

3.2 Input Files

Before describing the steps taken by the OSERTM to solve a solute transport
problem, it is instructive to first describe the input files and required data.
Formats for all the files described here can be found in Appendix A. The
first input file to be discussed is a namelist file, referred to as PARAM, which
contains values for the parameters shown in Table 3.1. A namelist is a
Fortran 90 construct that contains variable assignment statements, such
as alpha_L = 0.5. The program reads these assignment statements and
performs the variable assignments implied. Because this type of file is not
read in the traditional way, the placement of the value within the row is
unimportant, but it is important that the variable names are not changed,
that at the end of each row there is a comma, and that the end of the list of
assignments is signified by a backslash character. While this type of input is
not traditional, it has the advantage that the user can explicitly see which
variable is being assigned what value.

The name of the next input file to be accessed is specified in the PARAM
namelist file as FILESIN. This input file contains the filename and path,
relative to the home directory of the program, for all the input and output
files. The I/O files can have any name, as long as the name and path of each
file is less than or equal to 40 characters. This file contains names for what
will be referred to as the CHEM, ICOND, PATCH, SOIL, SPARAM, MOISTURE,
SPDIS, DRAIN, VEC, CDRAIN, MDITCH, and PROFILE files, in this particular
order. The CHEM file contains an identifying code, the soil-water partition
coeflicient, and the coeflicient of gas phase diffusion for each chemical, as well
as the temperature of the subsurface environment. The first chemical in the

list is assigned an identification code of 1, the second chemical in the list is
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Time Loop

Figure 3.3: Flowchart for the Main program of the OSERTM code.
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Table 3.1: Parameters specified in PARAM namelist.

alpha_L longitudinal dispersivity
alpha_TH transverse horizontal dispersivity
alpha_TV transverse vertical dispersivity
chem number of chemicals

choice order of TVD method

Dstar coefficient of aqueous molecular diffusion
delta_i discretization length in y-direction
delta_j discretization length in x-direction
delta_k discretization length in z-direction
delta_t temporal discretization size
filesin file containing I/0 file names

incrementa | output interval for concentration profile
incrementd | output interval for drain information

m number of cells in y-direction

n number of cells in x-direction

o number of cells in z-direction
stoptime length of simulation

trans 1 for transient simulations, otherwise 0

assigned a code of 2, and so on. This code is used to identify which chemical a
specific set of input or output data are associated with. Any chemical except
oxygen can be assigned any code; oxygen must be assigned the code 2. This
file is read using a specified format for each line; therefore, it is important to
follow this format. This is true for all of the following input files, as well. The
format of each input file will be described in Appendix A. The ICOND input
file contains the distribution of chemical within the model domain at the
outset of the program. This is done by specifying the time step of the mass
input, which, for the initial conditions, is equal to zero, and the x-, y-, and
z-bounds of any contiguous sections that have a common concentration of
the specified chemical. If a value greater than zero is input into the time step
field, the model will continue to assign the specified concentration to those
nodes until the model has completed the number of time steps indicated
in the time step field. This feature is useful for approximating constant
concentration sources within the model domain. A row of zeros marks the
end of the file. If this file contains no information, the initial conditions will
default to zero-concentration everywhere for each chemical except oxygen.
The model assumes that the dissolved oxygen concentration in pore fluid in
the unsaturated zone is initially at equilibrium with the atmosphere, while

the pore fluid in the saturated zone has a dissolved oxygen concentration of
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zero mg/L.

The PATCH file defines the mass flux into the model domain. As men-
tioned in Section 2.4, this mass flux is specified by assigning a ghost-node
concentration according to Equation (2.13). The program assumes that
mass enters only through the soil surface, so the user need only specify the
x- and y-bounds of any contiguous regions that have a common ghost-node
concentration of the specified chemical. Also, since the mass flux may begin
or end at any time, or may change with time, the time step values when the
flux begins and ends are specified in the second and third columns of the
input file. Other than those differences, the format of this file is much the
same as the ICOND file described above.

The files SOIL and SPARAM are used for both the hydrologic model, dis-
cussed in Section 4.1, and the OSERTM. The file SOIL uses the same region
specifying technique as the ICOND file to define regions within the model
domain that have a common soil type. This file specifies an integer code,
corresponding to a soil type, for each node within the model domain. Once
again, the end of the file is specified by a row of zeros. If no information is
provided in the file, then each of the nodes is given a value of one. There-
fore, if there is one soil type that is more pervasive than the others, it can
be specified as type 1, and then this file will only have to specify where
the other soil types are. This can save considerable time in writing the file.
Also, if two soil types are assigned to a single node, the soil type that was
specified last will have precedence. The soil parameters (porosity and bulk
density) corresponding to the soil types represented by each integer code are
specified in the SPARAM file.

The files MOISTURE, SPDIS, and DRAIN are output files of the hydrologic
model. The MOISTURE file contains a single column containing the moisture
content at each node written by increasing cell index j first, then i, and
finally k for each time step (refer to Figure 2.1). The SPDIS file contains the
directional components of the specific discharge for each of the cell faces for
each time level. This information is written as a column with the data for
the component of the specific discharge in the x-direction first, followed by
that for the y-direction, and finally the z-direction. Each of the directional
specific discharges are written out by increasing cell index j first, then i, and
finally k. For each drain segment in the model domain at all time steps,
the DRAIN file contains a code identifying the tile and segment numbers, the
tripartite cell location index, and the volumetric flow rate of groundwater
from the model domain into the drain segment (refer to Figures 3.1 and 3.2).

If the simulation has transient flow conditions, which would be indicated by
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the parameter assignment trans = 1 in the PARAM file, the MOISTURE, SPDIS,
and DRAIN files will contain many time steps of information ordered from
shortest elapsed time to longest elapsed time; however, if the simulation
does not have transient flow conditions, these files need only contain one

temporal set of data.

3.3 Output Files

As mentioned in Section 3.2, the output files of the OSERTM are VEC,
CDRAIN, MDITCH, and PROFILE. The formats for each of the files described
here can be found in Appendix B. The VEC file writes out the directional
components of the specific discharge located at each node in the follow-
ing three columns: x-directional component, y-directional component, and
z-directional component. This data is not created by the OSERTM, but
because GMS (a product of Environmental Systems Incorporated) was used
for visualization, and because GMS uses a different directional convention
for the x and z directions, this output file is needed to convert the data in
SPDIS into a GMS input file. In order to do this, the OSERTM reverses the
sign on the x- and z-directional components of the specific discharge from
the signs found in SPDIS. Also, it may be noted that the specific discharge
is input at the cell faces and output at the node. This is because GMS
requires the specific discharge to be specified at the node, not the cell faces.
Linear interpolation is used to estimate the directional components using
the data at either edge of the cell. The CDRAIN file outputs the mass flux
into the specified drain segment at a specified time. The first column of
this file contains the time the data was taken, and the remaining columns
contain the value of the mass flux of each chemical species. The MDITCH
file contains the mass flux of chemicals through a specified boundary of the
model domain (for example into the ditch shown in Figure 3.1) using a sim-
ilar format as the CDRAIN file. To determine this value each time the data
is sampled, the mass flux for each chemical is summed over the entire ditch
wall. Finally, the PROFILE file is actually a set of files, one for each chemi-
cal species. These files contain the concentration profiles of the associated
chemicals at specified times. The concentration data is output as a column
by first increasing cell index j, followed by i, and finally k. The frequency
of data output to the CDRAIN and MDITCH files is controlled by the program
parameter incrementd, which indicates the number of time steps between
data points. For example, if incrementd = 10 then data would be output

every tenth time step. In a similar way, the parameter incrementa controls
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the frequency of data output to the VEC and PROFILE files.

3.4 Program Function

Now that the form and content of the input and output files has been dis-
cussed, the method in which the Main file is used to coordinate the OSERTM
can be described. Figure 3.3graphically depicts the following discussion. The
first order of business of the Main program file is to declare all parameters
and global variables and arrays. Then the user is prompted to input the file
name of the PARAM namelist. This file name should include the path, relative
to the main program directory, and should be no longer than 40 characters.
The program then opens the namelist and performs the parameter value as-
signments specified therein. The time and space discretization information
provided by the namelist is then used to determine the dimensions of the
global arrays, such as the concentration field, specific discharge field, etc.,
and allocate dynamic memory to hold these arrays. Dynamic memory allo-
cation allows the program to assign exactly the amount of memory needed
for a particular problem, eliminating the need for the programmer to pre-
specify the size of the arrays, a process known as static memory allocation.
It is advantageous to avoid static memory allocation because it often leads
to inefficient memory use, or renders the program unable to solve very large
problems. If insufficient memory is available for the allocation process, the
computer will write an error of the form “<program filename>: WARNING
- <variable name> not allocated” to the screen, and the program will
crash. If the memory allocation is successful, however, the arrays will be
initialized to zero, and the program will continue.

Next, the relative path and file names of the input and output files are
read from FILES and stored in a character string array. Now the program
knows where to find all of the necessary input information. If there is an
error in one of the file names in FILES, the program will encounter a runtime
error when it attempts to open the erroneous file, and this will cause the
program to crash. The first of the files specified in FILES to be opened and
read is CHEM. The temperature specified at the beginning of this file is used
to calculate the density of water and the air-water partition coefficient for

each chemical species using the relationship:

pH,0 = 999.939900 + 4.216485 * 1072  (T') — 7.097451 * 1072 * (T?)+
+3.509571 % 105 % (1) — 9.9037785 % 10 &  (T) (3.1)

43



and Equation (2.2). After the chemical properties have been input, the
geological properties are read from the input files SOIL and SPARAM. The
information in SOIL is used to fill an array the same size as the discretized
spatial domain with integer values, which correspond to soil types defined
by parameters specified in SPARAM.

Next, the Main program opens MOISTURE, VEC, and (if the problem con-
tains tile drains) DRAIN and sets the reading frame to the first data value in
each of the files. The subroutines ReadTheta and ReadVel are then called to
input the moisture content and specific discharge fields, respectively. These
functions are designed not only to input the initial conditions, but also to
continue to update the hydrologic data for each time step during a transient
simulation. Because the ADE method requires hydrologic data at both the
old and new time levels, the OSERTM needs to store the information for
both time levels. This is done using a four-dimensional array for each type
of hydrologic data. The first three dimensions are spatial and correspond
to the x-, y-, and z-dimensions of the problem domain, while the fourth
dimension is temporal and can have either the value 1 (for old time level
(t)) or 2 (for new time level (t+1)). Despite the necessity of two time lev-
els of information, the functions ReadTheta and ReadVel only read in one
time level of information each time they are called. For this reason, the first
action these subroutines take is to overwrite the information at time level t
with the information at time level t+1. Then the data at the new time level
are read into the t+1 location of the array from the proper input file. This
process is unimportant the first time these functions are called (when setting
up the initial conditions), but it becomes important during the time step
calculations, especially if the problem has transient hydraulic conditions, as
will be seen momentarily.

Once the hydraulic information at the initial time step is read into mem-
ory, the output files specified in FILES are created. If the output file requires
a header, it is written at this time. Finally, the last step in initializing the
problem is to set the initial dissolved oxygen concentration to 8.52 mg/L in
the unsaturated zone and 0.0 mg/L in the saturated zone.

Once the problem has been initialized, the OSERTM begins to step
through time, solving for the concentration profile at each intermediate time
level until the specified stop time has been reached. This time stepping is
performed by a time loop. This loop begins with a call to the function
GenConc, which uses the information from ICOND to set up the conditions at
the old time level. Though the most common use of this function is to input

the initial conditions, because it can also be used to introduce mass within
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the model domain at any time during the simulation, it is located within the
time loop. The most obvious advantage to this structure is that it enables
the approximation of a constant concentration boundary condition some-
where within the model domain. This function call is followed by output
statements that will output data to the output files described in Section 3.3.
These output statements are controlled by two counters, which are initial-
ized to zero at the start of the program. The counter countd controls the
frequency of output to the CDRAIN and MDITCH files, while the other counter
counta controls the frequency of output to the VEC and PROFILE files. When
countd equals zero, data is written to the associated output files, and the
counter is incremented by incrementd. Similarly, when counta equals zero,
data is written to the associated files, and the counter is incremented by
incrementa. Because the counters are initialized to zero, the first output of
data will occur before any calculations on the concentration field have been
performed; therefore, all the output files begin with time zero data.

Next, the subroutines GetTheta and GetVel are called, but depending
on whether or not the problem has transient flow conditions, the input
functions perform differently. If the problem has transient flow conditions,
these functions behave as previously described, by overwriting the previous
old time level information with the previous new time level and reading
in the hydraulic data for the current new time level. Alternatively, if the
OSERTM is solving a problem that does not have transient flow conditions,
these functions merely copy the hydraulic conditions from the new time
level to the old time level, but make no attempt to read new information
from the MOISTURE or SPDIS files. When the necessary information for the
new time step is held in memory, another loop, which contains calls to
subroutines that solve the advection and dispersion subproblems described
in Sections 2.4 and 2.5, begins and repeats for each chemical species.

The advection subroutine, TVD_3d, begins by creating a new three-dimen-
sional array to hold the concentration field. This array is two cells larger
in each dimension than the actual concentration field. The interior cells of
this array are initialized with the concentration field that was passed into
the TVD_3d function, leaving a shell of empty cells around the boundaries.
The initial values for these ghost-nodes are determined by calling the func-
tion ApplyChem. ApplyChem reads in the information provided about the
flux boundary conditions in the PATCH input file. Then the ghost-nodes at
the soil surface are assigned values according to Equation (2.13). All the
boundaries are treated as flux type, but as mentioned in Section 3.2, the

assumption is made that mass will enter only through the soil surface. Once
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the boundaries are set, Equation (2.11) is used to determine the internodal
concentrations. The value of the limiter function necessary for this calcula-
tion is determined using the subroutine GetPsi. This function determines
the value of the limiter function shown in Equation (2.12), depending on the
input variable choice, which specifies the order of the TVD approximation.
Once the internodal concentrations in each of the three directions have been
determined, TVD_3d solves for the mass transfer between cells by solving
Equation (2.10). This calculation is performed by a loop over all the cells in
the model domain using a call to the function PTransfer. The PTransfer
subroutine determines the contribution to the aqueous phase mass balance
from both the gaseous and sorbed phases, based on the equilibrium assump-
tions shown in Equations (2.3) and (2.2). Also, during this loop, a check
is made to see if one or more drains pass through the cell, and if so, the
calculation accounts for the mass lost to those drains. When the new con-
centration at each of the cells in the model domain has been calculated, the
new concentration field is copied to the global array that passes the result
out of the TVD_3d subroutine. Finally, before exiting, the mass flux through
the side boundaries is summed and stored for possible output by the Main
program.

The dispersion subroutine XDisp2 begins by allocating two new arrays
that have the same dimensions as the actual concentration field and initial-
izing these arrays with the concentration field at the old time level. These
three-dimensional arrays will hold the U approximation and the V approx-
imation to the concentration field at the new time level and will be called
the U array and the V array, respectively. The function CalcDisp is then
called. This subroutine calculates the apparent dispersivity tensor, defined
in Equation (2.14), by first calculating the aqueous dispersion tensor using
Equations (2.19), (2.20), (2.21), (2.22), (2.23), and (2.24). However, rather
than using the pore water velocity, as specified in these equations, the spe-
cific discharge (¢ = V) is used, resulting in the calculation of the effective
aqueous dispersion tensor (ﬁ,J = 0D;;). Since at each cell face, only the
directional component of the specific discharge vector in the direction per-
pendicular to the plane of the cell face is defined, linear averaging is used to
determine the other components of the specific discharge vector needed to
solve for the apparent dispersivity tensor at the cell faces. After the aqueous
phase dispersion tensor has been defined, the effective gas phase diffusion
terms shown in Equation (2.25) are added.

Once the apparent dispersion tensor is completely defined, Equations

(2.32) and (2.33) are solved using zero-flux boundary conditions, as de-
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scribed in Equation (2.40), and a call to the PTransfer subroutine, which
is used to determine the effect of sorbed and gaseous phase concentrations
on the aqueous phase mass balance, based on the equilibrium assumptions
shown in Equations (2.3) and (2.2). After completing the calculations for
the U and V approximations, the U and V arrays are averaged cell by cell,
and the result is written in to the global concentration array, which is then
passed out of the XDisp2 subroutine.

After the dispersion subroutine has been called for each chemical species,
the subroutine Reactsielr is called to solve for the nitrification, denitrifica-
tion, and aerobic degradation of soil organic matter. This is done by solving
Equations (2.54), (2.55), and (2.56) for each cell in the model domain, us-
ing a call to the PTransfer subroutine. The result is stored in the global
concentration array, which is then passed out of the subroutine.

At this point, the time loop repeats itself for the next time step. When
the stop time is reached, as specified in the PARAM namelist, the time loop
exits, and data is output for the final conditions. Finally, the memory in

which the global arrays are stored is deallocated and the program exits.

3.5 Verification of the Subroutines

After each of the subproblem solvers was developed, it was tested against
accepted solutions to check for programming correctness and method ac-
curacy. After the subroutines were tested individually, the OSERTM was
validated using a three-dimensional analytical model.

To verify the advection subroutine, two tests were performed. The first
test was a one-dimensional advancing front problem. In this problem, the
model domain is a one-dimensional region of length 1 meter, with specific
discharge (v6) equal to 0.005 m/day. The spatial domain was discretized
into 20 cells, each of length (Az) 0.05 meters, while the temporal domain
was discretized into time steps (At) of 1 day. This time and space dis-
cretization resulted in a Courant number (i) of 0.1. After 100 days, the
concentration front should have been located at z = 100 (v6,,) m. The re-
sults of the true solution, the first-order upstream method, Roe’s Superbee
TVD method, and the ULTIMATE TVD method can be seen in Figure 3.4.
As expected, the ULTIMATE TVD and Roe’s Superbee methods exhibited
significantly less numerical dispersion than the first-order upwind method,
though surprisingly Roe’s Superbee slightly outperformed the ULTIMATE
TVD method in this test. However, despite varying amounts of non-physical

dispersion, all three methods resulted in valid approximations for the true
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Figure 3.4: Concentration profiles of steady one-dimensional pure advection
of a continuous source after 100 seconds, solved with a first-order upwind
method, Roe’s Superbee method, and the ULTIMATE TVD method. Note
the relative accuracy of each method.

solution. To further support this claim, a mass balance was performed on
each of the three solutions by numerically integrating the area under the
curve. This calculation showed that mass was indeed conserved in each of
the three cases.

The second test was a two-dimensional advancing pulse with uniform,
multidirectional flow. In this case a two-dimensional grid was defined with
Az = Ay = 0.5 m. The specific discharge was specified to be 0.2 m/day at
a 45° angle to the coordinate axis, so that the specific discharge in both the
x-direction (fv,) and the y-direction (fv,) were equal to 0.1414 m/day. The
time step was chosen to be 1 second, resulting in a Courant number of 0.14.
After 40 days, the center of mass of the pulse should have moved to location
X =10.7 m, Y = 10.7 m without distortion, but instead, it can be seen in
Figure 3.5 that the plume spread out along the axis perpendicular to the
direction of flow; however, this result exhibits considerably less numerical
dispersion than the first-order upwind method applied to the same problem,
as shown in Figure 3.6.

These two comparisons of the advection subroutine to analytical solu-
tions suggest that the TVD solver can accurately solve the advection sub-
problem, and that the higher-order TVD methods are subject to significantly
less distortion than the first-order upwind method. This result is consistent
with the literature (Zheng and Wang, 1999; Chilakapati and Yabusaki, 2000).
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Figure 3.5: ULTIMATE TVD approximation of the concentration profile of
a square plume with sides of length 10 meters after advecting for 40 days.
Initially, the center of mass of the plume was located at X=Y=10 m. Flow
is steady moving from the bottom left to the top right of the figure at a 45°
angle to the axes. The contours are drawn at 90%, 75%, 50%, and 25% of
the original concentration.
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Figure 3.6: First-order upwind approximation of the concentration profile
of a square plume with sides of length 10 meters after advecting for 40 days.
Initially, the center of mass of the plume was located at X=Y=10 m. Flow
is steady moving at 0.2 m/day from the bottom left to the top right of the
figure at a 45° angle to the axes. The contours are drawn at 75%, 50%, and
25% of the original concentration.
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Figure 3.7: Concentration profile of a one-dimensional pure diffusion prob-
lem after 1000 seconds, solved by both an analytical model and the ADE
method. Initially the concentration was zero everywhere except at X=0.
The boundary X=0 is a constant concentration boundary with unit concen-
tration. The diffusion coefficient is 2.5*1075 m?/s.

The dispersion subroutine was validated using two pure diffusion scenar-
ios. The first scenario is a one-dimensional diffusion of a constant concen-

tration boundary. The analytical solution for this scenario is:

where D* = 2.5 %10 ® m?/s. To solve this problem with the dispersion sub-
routine, the spatial and temporal domains were discretized into 0.01 meters
and 1.0 second lengths, respectively, resulting in a D value of 0.25. After
1000 seconds, a mass balance was performed by numerically integrating the
area under the curve shown in Figure 3.7. This resulted in a quantification
of only 0.73% error.

A similar scenario was also used to test the hypothesis that the ADE
method is unconditionally stable. In this case, the same diffusion coefficient
and space discretization were used. However, the discretization of the tem-
poral domain was chosen to be either 1, 4, 10, or 100 seconds, resulting in
stability parameters (D) of 0.25, 1, 2.5, and 25, respectively. As can be seen
in Figure 3.8, the ADE solutions after 1000 seconds do not oscillate, but
seem to contain less mass as D increases. This latter observation was ver-

ified by numerical integration of the area under the curves, which revealed
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Figure 3.8: Concentration profile of the one-dimensional pure diffusion case
presented in Figure 3.7, solved with the ADE method and increasing values
of the stability parameter D.

a mass error of 0.73%, 3.3%, 9.1%, and 62% for each of the cases, respec-
tively. This test shows that the ADE method does not become unstable as
D increases, but that the mass error of the method increases as D increases.
Further tests suggest that the method has good accuracy when D < 1. This
result is similar to one presented by Morita and Yen (2000), who noted that
the accuracy of the ADE method is better than that of Brian’s ADI method
when D < 1.

The second scenario is a two-dimensional problem, which has the follow-

ing boundary and initial conditions:

Cit=0,z>0,y>0) = Cp
Ct=0,z=0,y=0) = 0

where: D* = 1% 107° m?/s. Carslaw and Jaeger (1959, p. 171) have pre-

sented the following analytical solution for this scenario:

c T Y
c ~omi avmi (3:3)

This problem was solved with the dispersion subroutine by discretizing the
spatial domain into 0.01 meter by 0.01 meter blocks, and the temporal do-
main into 10 second durations, resulting in a stability parameter of D = 1/2.

Since the dispersion subroutine implements zero flux boundary conditions,
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Figure 3.9: ADE method approximation to the concentration profile after
1000 seconds, resulting from a classic two-dimensional pure diffusion test
problem. Initially the concentration was at unit concentration everywhere,
except at the boundaries X=0 and Y=0. The boundaries X=0 and Y=0 are
constant concentration boundaries, both with values of zero. The diffusion
coefficient is 1¥107° m?/s.

the constant concentration boundary condition was approximated by set-
ting the concentration at the boundary nodes to zero at the end of each
time step. The resulting concentration profile after 1000 seconds (shown in
Figure 3.9) had at most, 5% error relative to the initial concentration, when
compared with the analytical solution. Figure 3.10 shows the difference be-
tween the dispersion subroutine solution and the analytical solution. It can
be seen in this figure that the error is largest near the boundaries. This
result was expected because of the method of implementing the boundary
condition described above. Away from the boundaries, however, there is
good agreement between the two solutions.

These comparisons of the dispersion subroutine to analytical solutions
suggest that the ADE solver can effectively solve the dispersion subprob-
lem, and that the ADE method will not oscillate with increasing stability
parameter D, though the best accuracy is achieved when this value is less
than or equal to one.

In order to validate the use of the independent pseudo-analytical solu-
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Figure 3.10: The difference between the ADE method approximation (shown
in Figure 3.9 and the analytical solution to this classic two-dimensional pure
diffusion test problem. The contours are drawn at 0%, 1%, 2%, 3%, 4%,
and 5% of the initial concentration.
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Table 3.2: Reaction parameters used in comparison of the pseudo-analytical
reaction formulation to the Runge-Kutta method.

Knit 3.47*10~% mg/(cm~3min) Hudson (2001d)

kaenit 1.38*10~8 mg/(cm~3min) Hudson (2001a)

Ko 1*10~® mg/(cm 3min) assumed value

Kyup 1*10~* mg/cm 3 MacQuarrie and Sudicky (2001)
KNOS‘2 5*10~% mg/cm 3 MacQuarrie and Sudicky (2001)
Ko, 1*10~* mg/cm =3 MacQuarrie and Sudicky (2001)
kr 4.0 assumed value

tion to the reaction system described in Section 2.6, a reactive transport
problem was solved with both the reaction subroutine, using the pseudo-
analytical equations, and an alternate subroutine, which employs a fourth-
order Runge-Kutta method. The problem domain was one-dimensional, 50
cm in length, and discretized into 0.05 cm blocks. Time was discretized into
1-minute durations. Flow was steady at 0.005 cm/min. Initially there was a
dissolved oxygen concentration in the model domain of 8.52*10~3 mg/cm3.
The initial concentrations of ammonium and nitrate were zero. Ammonium
ion moved into the model domain through a constant flux boundary at a
rate of 1.25%10~® mg/min, which is equivalent to a ghost node concentra-
tion of 1¥*107% mg/cm3. There is also a flux of dissolved oxygen into the
model domain of 1.1¥10~7 mg/min, which is equivalent to a ghost node con-
centration of 8.52*107% mg/cm?
Table 3.2. After 100 time steps the results from both the pseudo-analytical

and the Runge-Kutta solver for each of the chemical species can be seen

. The reaction parameters can be seen in

in Figures 3.11, 3.12, and 3.13. The maximum deviation of the pseudo-
analytical approximation from the fourth-order Runge-Kutta solution was
1.9%, 0.33%, and 0.28% for the ammonium, nitrate, and oxygen profiles,
respectively. Therefore, it can be seen that the decoupled reaction system
solved with the pseudo-analytical equations is a good approximation of the
true system of ODEs that describe the reaction system.

In order to validate the combined transport model, 3DADE, an analyti-
cal model for the three-dimensional ADRE, developed by the U.S. Salinity
Laboratory in Riverside, CA, was used (Leij and Bradford, 1994). In this
model, solute is input as a rectangle in the x,y plane, centered around the
z-axis. Flow is steady and one-dimensional in the z-direction. For this test,
the source was defined to be continuous, with dimensions of 100 meters in

the x-direction and 100 meters in the y-direction. The flow rate was constant
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Figure 3.11: Concentration profile of the ammonium ion after 100 minutes,
solved with the OSERTM using both the pseudo-analytical reaction subrou-
tine and a fourth-order Runge-Kutta method. The maximum deviation of
the pseudo-analytical method from the Runge-Kutta method is 1.9%.
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Figure 3.12: Concentration profile of nitrate after 100 minutes, solved with
the OSERTM using both the pseudo-analytical reaction subroutine and a
fourth-order Runge-Kutta method. The maximum deviation of the pseudo-
analytical method from the Runge-Kutta method is 0.33%.
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Figure 3.13: Concentration profile of dissolved oxygen after 100 minutes,
solved with the OSERTM using both the pseudo-analytical reaction sub-
routine and a fourth-order Runge-Kutta method. The maximum deviation
of the pseudo-analytical method from the Runge-Kutta method is 0.28%.

at 1.0 m/day, and the dispersion coefficients in the longitudinal, transverse
horizontal, and transverse vertical directions were set to 3.0 m?/day. This
problem was solved with the OSERTM by discretizing the spatial domain
into 64,000 uniform 10 meter by 10 meter by 10 meter cubes, and the tem-
poral domain into 5-day intervals. This resulted in a Courant number of
0.125, and a D value of 0.01. The results along the transect X=0 of the
OSERTM and the 3DADE model after a 125-day simulation can be seen
in Figures 3.14 and 3.15, respectively. The error between these two models
was, at most 3% of the initial concentration. Figure 3.16 shows the absolute
difference between the two models along this transect. It can be seen in this
figure that the error is largest near the source boundaries - most likely a
result of the spatial discretization size.

As can be seen in Figure 3.16, the performance of the combined transport
model for three-dimensional problems is comparable to that of an analytical
model, though the space discretization may result in errors near the source
boundaries.

Finally, to validate the combined reactive transport model, the solution
of the OSERTM to a one dimensional problem including advection, disper-
sion, sorption, and first-order decay was compared to that of an analytical
model developed by Valocchi et al. (2001). In this problem, the spatial
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Figure 3.14: Solution to a three-dimensional problem with a steady one-
dimensional flow field after 124 days using the OSERTM. Flow is downwards
in the z-direction at m/s. Dispersion in both the lateral and transverse
directions is m?/s. The contours are drawn at 90%, 70%, 50%, 30%, and
10% of the original concentration.
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Figure 3.15: Analytical solution to the problem shown in Figure 3.14, solved
with the 3DADE model (Leij and Bradford, 1994). The contours are drawn
at 90%, 70%, 50%, 30%, and 10% of the original concentration.
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Figure 3.16: The difference between the two models shown in Figures 3.14
and 3.15. The contours are drawn at 3% and 1% of the original concentra-
tion.
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Figure 3.17: Results of the OSERTM and an analytical model for a 100 day
simulation of a one-dimensional problem including advection, dispersion,
sorbtion and first-order decay.

domain is semi-infinite, and the solute entered the model domain through a
constant flux boundary. The retardation coefficient (1 + Kypp) was 3.0, the
specific discharge (v0) was 1.0 m/day, the longitudinal dispersivity was 1.0
m (resulting in a coefficient of dispersion of 1.0 m? /day), and the first-order
rate constant was 0.05 day~!. In order for the problem to be solved by the
OSERTM, the spatial domain was discretized into 400 cells, each of length
0.5 meters, while the temporal domain was discretized into time steps of
0.2 days. This time and space discretization resulted in &/ = 0.133 and
D = 0.267. The results from both models, after a simulation of 100 days,
can be seen in Figure 3.17. In order to quantify the error of the OSERTM
solution, a mass balance was performed by numerically integrating the area
under the curves shown in this figure. This mass balance revealed an error
of only 0.86%, confirming that the OSERTM solution was valid.

3.6 Summary

In this chapter, the format and content of the input and output files for the
OSERTM were described. The structure of the program was described in
detail, and the implementation of the mathematical equations developed in
Chapter 2 was described. The advection, dispersion, and reaction models

were tested separately by comparison with analytical solutions. Then the
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combined model was tested by comparison with two analytical models. The
first model was a one-dimensional reactive transport model, and the second
was a three-dimensional transport model. In the next chapter, the OSERTM

will be applied to two sample problems.
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Chapter 4

Application of the OSERTM
to Sample Problems

In this chapter, the OSERTM will be applied to a generic two-dimensional
field scale system, which will provide a more realistic environment for the
simulation of solute transport problems. Despite the ability of both the OS-
ERTM and the conjunctive flow model to solve problems in three-dimensions,
a two-dimensional system was chosen because it requires less computation
than a similar three-dimensional problem. A two-dimensional cross-section
was considered to be a good starting place to begin evaluating the abilities of
the OSERTM. Before discussing these applications, however, it is necessary

to describe the hydrologic model used in this research.

4.1 A Brief Introduction to the Conjunctive
Hydrologic Model

As mentioned in Chapter 2, the OSERTM does not have the capability to
solve for hydrologic conditions; instead this information must be input from
a hydrologic model. For this research, a simplified two-dimensional version
of the subsurface model described by Morita and Yen (2000, 2002) was used.
In the future, however, the complete model, which combines a conjunctive
overland-subsurface flow model with a pipe network model to simulate tile
drains, will be used. In Morita and Yen’s model, overland flow is solved in
two dimensions, subsurface flow is solved in three dimensions, and tile flow is
solved in one dimension. The simplified two-dimensional subsurface model
uses Larkin’s ADE method to solve the two-dimensional Richards equation

shown below.

80, 0 op 0 O
5 = %K(Qw)a_x + &K(ew) (5 + 1) (4.1)
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O is the moisture content [L3 water/ L? aquifer]
K(6,,) is the effective hydraulic conductivity (assumed isotropic)
[L/T]
P is the pressure head [L]
The two parameter van Genuchten relationships shown in Equations (4.2)
and (4.3) were used to relate pressure head to moisture content and moisture

content to hydraulic conductivity, respectively (Tindall and Kunkel, 1999;
Charbeneau, 2000).

1 m
o - (i) "

K(Qw) = I{sat\/6 (43)
0w — 6
@ w wr
7 — Owr
where:
a is a fitted parameter [L~!]

n is a fitted parameter
m % is a fitted parameter
¢ =—1 >0 is the suction head [L]
K

sat is the saturated hydraulic conductivity [L/T]
Owr is the irreducible moisture content [L3 water/ L3 aquifer]
7 is the porosity [L3 voids/ L3 aquifer]

Darcy’s Law was used to calculate water flux into the drain. This equa-
tion was simplified by assuming that the pressure in the drain is equal to
atmospheric pressure, and combining terms to define a drain conductance

(Cq) as shown in Equation (4.4) below.

Qa = Ca(H) (4.4)

Qq is the flow rate of water into the drain [L3/T)]
H  is the hydraulic head [L]

where:

This approach is similar to the approach used in the MODFLOW drain
package (McDonald and Harbaugh, 1988). For the following simulations,
the drain conductance was set to a very large value so that flow into the
drain would be limited only by the porous medium, not by the conductivity
of the drain.
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This model requires the user to input both the rainfall intensity over
time and the spatial distribution of soil properties, using the van Genuchten
parameters (o, n). Furthermore, the location of the tile drains and the type
of boundary conditions for the sides of the model domain must be specified.
The model requires the top of the model domain (soil surface) to have a
specified flux boundary, and the bottom of the model domain to have a
zero flux boundary. When this information has been properly specified, the
hydrologic model will solve for the specific discharge at all cell boundaries,
the moisture content at all nodes, the volumetric flow rate of water out of
the model domain through the sides, and (if a tile drain passes through the
cell) the volumetric flow rate of groundwater from that cell into the drain.
All of this information is output for each of the time steps using the format
shown in Appendix B. It is important to note that the hydrologic model
must be constructed using the same spatial discretization as will be used
in the OSERTM. If the solute transport simulation will have transient flow

conditions, then the temporal discretization must be the same as well.

4.2 Contaminant Transport Scenario

The generic system was designed in collaboration with Dr. Robert Hudson
of the Department of Natural Resources and Environmental Science, at the
University of Illinois at Urbana-Champaign, and was based on conditions
typically found on agricultural fields in Central Illinois. The hypothetical
soil cross-section is drained by one tile line, as well as by a drainage ditch
that borders the right side of the cross-section. Both the tile and the ditch
run perpendicular to the plane of the cross-section. The tile line is located
at a depth of 1 meter, and is oriented 15.5 meters to the right of the left
boundary and 30.5 meters to the left of the ditch. This geometry reflects
typical drain depths, half-spacing, and setbacks from drainage ditches in
Central Illinois (Gentry et al., 2000; Hudson, 2001d). The ditch is 3 meters
deep, and it is assumed that water flows out of the ditch faster than it flows
out of the soil column; therefore, the ditch is always empty. See Figure 4.1
for a schematic of the physical domain of the problem.

In addition to the cross-section geometry and soil properties, it is also
necessary to define the boundary conditions for the hydrologic model. The
wall of the ditch presents a logical location for the right boundary of the
model domain; however, because this boundary must allow for a transient,
non-uniform flux of water, the boundary condition was simplified by making

the assumption that the water level in the ditch was always at the level of
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Figure 4.1: Schematic of a hypothetical field cross-section.

the bottom of the ditch. This allowed a series of ghost-nodes, adjacent to
the boundary nodes located at the ditch wall, to be defined with a constant
pressure equal to atmospheric pressure (0 atm). The left boundary was
defined using the further simplification that there is a symmetrical drain and
ditch configuration on the opposite side of this boundary. This symmetry
results in a hydraulic divide located at the left boundary; thus, this boundary
can be defined as a no-flow boundary. For simplicity, the bottom boundary
was also defined as a no-flow boundary. The top boundary was modeled as
a flux-type boundary. Additionally, it was assumed that the recharge water
is at equilibrium with atmospheric oxygen, and thus has a dissolved oxygen
concentration of 8.52 mg/L.

The chemicals of interest were ammonium, nitrate, oxygen, and a non-
reactive tracer. It is assumed that only ammonium will sorb to the soil,
and that the only chemical that can be in the gas phase in appreciable
quantities is oxygen. The soil-water partition coefficient for ammonium in
Central Tllinois soil is taken to be 1.0*10~2 ¢cm?®/mg (Hudson, 2001d), the
Henry’s Law coefficient of oxygen is taken to be 4.38*10% atm/mole fraction
(Thibodeauz, 1979), and the gas phase diffusion coefficient is taken to be
34.7 cm? /min (MacQuarrie and Sudicky, 2001). All of these chemicals were
assumed to have a coefficient of molecular diffusion of 6.94*¥10-4 ¢cm?/min,
a value within the range of common ions (Burnett and Frind, 1987).

An attempt was made to determine reaction parameters for Central I1li-
nois; where data were lacking, values were either taken from the literature
or assumed. The maximum rates of nitrification and denitrification in Cen-
tral Illinois were taken to be 3.47*10~% mg/(cm?® min) (Hudson, 2001d) and
1.38*1078 mg/(cm?® min) (Hudson, 2001a), respectively. No data were avail-
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Table 4.1: Solute transport parameters used in sample applications.

Kiyy, | 1.00¥107% cm®/mg Hudson (2001d)

Hop, 4.38*10* atm /mole fraction | Thibodeaux (1979)

D(g) 34.7cm? /min MacQuarrie and Sudicky (2001)
D* 6.94*10-4 cm?/min Burnett and Frind (1987)

Enit 3.47*10~® mg/(cm~3min) Hudson (2001d)
kgenit | 1.38*107® mg/(cm™3min) Hudson (2001a)

ko 1.38*10~8 mg/(cm™3min) assumed value
Kyut 1*10~* mg/cm 3 MacQuarrie and Sudicky (2001)
KN03—2 5*107° mg/cm~3 MacQuarrie and Sudicky (2001)
Ko, 1*10~* mg/cm~3 MacQuarrie and Sudicky (2001)
kr 4.0 assumed value

able on the rate of degradation of soil organic matter (SOM). Because rates
of biological reactions in the subsurface are highly dependent upon loca-
tion, it was preferable to assume a value for this reaction, rather than to
use a value from the literature. Because MacQuarrie and Sudicky (2001)
use equivalent values for the rate of the degradation of SOM and the rate
of denitrification, this rate was assumed to be 1.38*107% mg/(cm3min), the
rate of denitrification used in this research. The half-rate constants for ni-
trification, denitrification, and degradation of SOM were taken to be 1¥10™4
mg/cm3, 5%1075 mg/cm?, and 1*10~* mg/cm?, respectively (MacQuarrie
and Sudicky, 2001). The inhibition factor k; was fitted to the expected re-
sult when applied to several preliminary model runs. Table 4.1 summarizes
the solute transport parameters.

Initially, there was no ammonium, nitrate, or tracer in the model domain.
Dissolved oxygen was present in the unsaturated zone at a concentration of
8.52*10 % mg/cm?®. Ammonium, dissolved oxygen, and the tracer were al-
lowed to enter the system through an advective flux boundary at the land
surface. Oxygen entered the model domain via the recharge water at a con-
centration of 8.52*1072 mg/cm?®. This flux of oxygen was applied over the
entire land surface for the duration of the simulation. Ammonium, however,
was only allowed to enter the model domain over a portion of the land sur-
face. Farm managers often leave a buffer zone between a drainage ditch and
the crop. Because of this practice, it was assumed that fertilizer would not
be applied within 5 meters of the ditch. Furthermore, because fertilization
is not a constant process, it was assumed that the fertilizer (represented by

ammonium) would be applied only during a specified interval, and in such a
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quantity as to enter the model domain in the recharge water at a concentra-
tion of 1.0*10~3 mg/cm?. The tracer was allowed to enter the model domain
in a similar manner as ammonium, and was used to check for continuity of

the flow regime.

4.3 Steady State Flow Scenario

The first problem to which the OSERTM will be applied was designed not
only to demonstrate the model’s capabilities, but also to reveal defects in
the implementation of the model. To meet these goals, a problem scenario
was designed to comprise aspects of a real world application, while, at the
same time, maintaining the degree of simplicity necessary to make any errors
in the model results apparent. This scenario uses steady, two-dimensional
flow conditions in a heterogeneous aquifer in order to evaluate the effect of
dissolved oxygen concentration on the amount of nitrate that is lost from
the soil system to surface water.

The soil in the hypothetical cross-section was modeled after Drummer
soil, typical of Central Illinois, and consists of seven distinct layers. The four-
parameter van Genuchten model (Vogel and Cislerova, 1988) parameters
for these layers were provided by Dr. Richard Cooke of the Department of
Natural Resources and Environmental Science at the University of Illinois at
Urbana-Champaign, and can be seen in Table 4.2. Drain tiles are commonly
installed by trenching, a method that involves digging a trench, placing a
tile line and some filter material in its bottom, and backfilling it with soil
material (Broughton and Fouss, 1999). This process may disturb the soil
layers directly above the tile line (Cooke, 2001b). For this reason, it was
assumed that this soil would have different hydraulic properties than the
surrounding soil. For this reason, a homogeneous soil column with higher
permeability was placed directly above the drain. This column had a width
of 1 meter, a size that falls within the range of typical widths of trenches
dug by machines (Broughton and Fouss, 1999). Since there is no information
from which to determine van Genuchten parameters for this soil, it was
assumed to behave similarly to the AP layer, defined in Table 4.2, because
this layer has the highest permeability of any of the Drummer soil layers.
Furthermore, because data for the soil properties below 117 centimeters were
unavailable, it was assumed that the soil below this depth is the same as the
soil comprising the bottom-most stratum. Figure 4.2 shows the location of
each of the seven soil types.

The steady water flux through the top boundary was defined to be 10~*
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Table 4.2: The four-parameter van Genuchten model parameters for the
seven soil types used in the steady state flow scenario (Cooke, 2001a).

soil layer | index | depth | 6 « n Koot
cm™! cm/min
AP 1 0-18 0.5045 | 0.0359 | 1.1651 | 0.022987
A 2 18-36 0.4862 | 0.2712 | 1.1155 | 0.022840
BA 3 36-48 | 0.4760 | 0.5399 | 1.1121 | 0.013215
Bgl 4 48-64 | 0.4143 | 0.1374 | 1.0971 | 0.012058
Bg2 5 64-81 | 0.3921 | 0.0649 | 1.0997 | 0.0070216
Bg3 6 81-99 | 0.4049 | 0.0299 | 1.1200 | 0.0079233
Cg 7 99-117 | 0.4460 | 0.0060 | 1.1474 | 0.0064650
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Figure 4.2: Location of each of the seven soil types used in the steady state

flow scenario. Note that the vertical axis has been exaggerated by a factor
of 3.
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Figure 4.3: Saturation profile of the steady state flow scenario. Note that
the vertical axis has been exaggerated by a factor of 3.

cm/min. This value reflects the average annual precipitation minus evapo-
transpiration in Central Illinois (Hudson, 2001c).

The initial condition of the model was chosen to be a flat water table 1
meter below the land surface, with hydrostatic conditions above and below.
This initial condition would represent an equilibrium saturation profile, if
the drain and ditch were impervious to flow. However, because both the
drain and ditch walls are permeable, this saturation profile will immediately
cause flow out of the model domain when the simulation begins. Because
this model will be run with a constant recharge until steady state is reached,
the flow out of the model domain resulting from the arbitrary specification
of the initial conditions will not affect the model results.

The flow model was applied to the hypothetical cross-section using a
spatial discretization of 5 centimeters in the vertical direction and 100 cen-
timeters in the horizontal direction. A temporal discretization of 1 minute
was used. Based on previous studies employing a similar model cross-section,
it was estimated that a simulation of 10,000,000 minutes would be sufficient
for the model to reach steady state. The resulting flow and saturation pro-
files, which can be seen in Figures 4.3 and 4.4, reflect only a 5% difference
between the flow into the profile through the soil surface and the flow out
of the profile through the drain and ditch walls.

After completing the flow simulation, it was observed that the simulated
soil was much less permeable than expected. The explanation for this ob-
servation was that the van Genuchten parameters used corresponded to the
four-parameter van Genuchten model, whereas the conjunctive flow model
employs the two-parameter van Genuchten model (shown in Equations (4.2)
and (4.3)). This error caused the maximum steady state infiltration rate for
a particular saturation profile of the soil to be approximately 2 orders of

magnitude lower than if the correct parameters had been used. Despite this
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Figure 4.4: Magnitude and direction of specific discharge vectors in units of
cm/min for the steady state flow scenario. Note that the vertical axis has
been exaggerated by a factor of 3.

error, this simulation is still valuable to demonstrate the ability of the OS-
ERTM to solve solute transport problems in a heterogeneous aquifer with
non-uniform, multi-dimensional flow conditions in both the saturated and
unsaturated zones.

To validate that the OSERTM would produce valuable results when
using this flow regime, as well as to get an estimate of the travel time dis-
tribution, the transport of a non-reactive tracer was simulated using these
hydrologic data, the same spatial discretization as the flow model, and a
temporal discretization of 10 minutes. Furthermore, the longitudinal, trans-
verse horizontal, and transverse vertical dispersivities for the steady state
profile were chosen to be 0.2 cm, 0.02 cm, and 0.002 cm, respectively. The
simulation was run for 525,600 time steps, a total of 10 years. The tracer
was applied at a concentration of 1 mg/cm?® across the entire land surface
during the first minute of the simulation. A mass balance was performed
by numerically integrating the area under the breakthrough curves of the
drain and ditch shown in Figure 4.5. The resulting mass error of 1.7% was
considered to be acceptable.

The results of this simulation indicate the existence of short flow paths,
through which the solute can reach the ditch wall. The tracer that takes
these paths begins to exit the soil profile almost immediately. The simulation
reveals that after approximately 0.5 years, all the solute that was within the
capture zone of these flow paths has exited the model domain. Around this
time, the tracer has also begun to exit the model domain through the drain,
indicating that the shortest flow paths to the drain take approximately 0.5
years. After approximately 1 year, the mass flux through the drain peaks
and then begins to decline. The mass flux through the ditch resumes after

approximately 1.25 years, and reaches a peak after approximately 1.75 years.
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Figure 4.5: Mass breakthrough of a non-reactive tracer from the drain and
ditch resulting from the steady state flow scenario.

Finally, after approximately 10 years, most of the tracer has left the model
domain. These results indicate that the majority of the tracer exits the
model domain via flow paths of moderate length, while the remainder exits
through the short flow paths previously described, or through long flow
paths (4-10 years).

The OSERTM was then applied to a series of three simulations that
focused on the effect of the dissolved oxygen concentration on the amount
of nitrate that exited the model domain through the drain and ditch. Each
of these simulations used a different value for the rate of the consumption
of SOM. In the first simulation, this rate was set to zero; thus, the effects
of this reaction on the amount of nitrate that left the model domain were
ignored. In the second simulation a rate of 1.38*107® mg/(cm®min), the
assumed value shown in Table 4.1, was used, and in the third simulation
a rate of 5.00*1078 mg/(cm®min) was used. These three simulations will
be referred to as scenarios A, B, and C, respectively. In all three of these
simulations, ammonium was applied to the land surface during the first day,
after which, no more ammonium entered the soil profile. Table 4.3 lists the
different reaction rates described here.

A1l three scenarios were run for 210,240 time steps, a total of 4 years.
The breakthrough curves of oxygen and nitrate for each of the three scenar-

ios are shown in Figures 4.6 and 4.7. The breakthrough curve of ammonium
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Table 4.3: Rate of SOM degradation for the three scenarios of the steady
state flow problem.

Scenario | Max rate of consumption of SOM
A 0.00 mg/(cm ™ 3min)
B 1.38*10 % mg/(cm 3min)
C 5.00¥10® mg/(cm 3min)
0.006
0,005 - /\
= ,
£ 0.004
B
S — Oxygen - A
Ive | — Nitrate - A
>;'<" 0.003 — Oxygen - B
'-% Nitrate - B
i — Oxygen-C
s 0.002 — Nitrate- C
0.001 -
0 T T T T 1
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Time (years)

Figure 4.6: Mass breakthrough of nitrate and oxygen from the drain result-
ing from reaction scenarios A, B, and C.

is not shown, because no ammonium exited the model domain. The concen-
tration profiles at 3, 6, 9, and 12 months that resulted from the simulation
of scenario A are shown in Figures 4.8, 4.9, and 4.10 for ammonium, nitrate,
and oxygen, respectively.

These figures show that ammonium sorbs very strongly to the soil in the
top layers, and is converted to nitrate before it can reach the tile line or ditch.
The large nitrate plume created by this conversion of ammonium moves
through the soil profile to the drain or ditch, where it is removed from the
profile. If the soil profile is dominated by regions with high concentrations
of dissolved oxygen, as is the case in scenario A, then more nitrate will exit
the model domain than if the profile contains more area of lower dissolved
oxygen concentration, as can be seen in Figures 4.6 and 4.7. Therefore, it is

very important to accurately model the dissolved oxygen concentration in
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Figure 4.7: Mass breakthrough of nitrate and oxygen from the ditch resulting
from reaction scenarios A, B, and C.
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Figure 4.8: Concentration profiles of ammonium (mg/cm?®) for scenario A
at (a) 3 months, (b) 6 months, (c) 9 months, and (d) 12 months. Note that
the vertical axis has been exaggerated by a factor of 3.
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Figure 4.9: Concentration profiles of nitrate (mg/cm?) for scenario A at (a)
3 months, (b) 6 months, (c) 9 months, and (d) 12 months. Note that the
vertical axis has been exaggerated by a factor of 3.

Figure 4.10: Concentration profiles of oxygen (mg/cm?®) for scenario A at
(a) 3 months, (b) 6 months, (¢c) 9 months, and (d) 12 months. Note that
the vertical axis has been exaggerated by a factor of 3.
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Table 4.4: The van Genuchten parameters for the seven soil types used in
transient flow scenario (Ellsworth, 2002).

soil layer | index | depth | 6, o n Koot

cm ! cm/min
AP 1 0-18 0.5060 | 0.0070 | 1.5450 | 0.022917
A 2 18-36 | 0.5060 | 0.0080 | 1.5450 | 0.022917
BA 3 36-48 | 0.4810 | 0.0080 | 1.5380 | 0.013194
Bgl 4 48-64 | 0.4900 | 0.0080 | 1.5150 | 0.011806
Bg2 5 64-81 | 0.3840 | 0.0090 | 1.4660 | 0.006944
Bg3 6 81-99 | 0.4750 | 0.0080 | 1.5210 | 0.007639
Cg 7 99-117 | 0.4040 | 0.0060 | 1.6020 | 0.006465

the soil profile. Furthermore, it can be seen that the nitrate plume reaches
the tile drain after approximately 6 months, while it takes approximately 1
year for it to reach the ditch wall. This lag is seen in the maximum nitrate
breakthrough concentration as well.

Had the correct van Genuchten parameters been used, it is expected that
nitrate breakthrough would have occurred much sooner, and the amount of
nitrate that exited the model domain would have been larger for all scenarios,

because there would have been less total saturated area in the model domain.

4.4 Transient Flow Problem

The second problem to which the OSERTM was applied was designed to
demonstrate the model’s ability to solve transient flow problems. This
problem uses the same soil stratigraphy as shown in Figure 4.2, which is
described by the parameters for the two-parameter van Genuchten model
shown in Table 4.4.

Because this model has a transient saturation and flow profile, a more
realistic initial condition than that used for the steady state profile was
needed in order to reduce the impact of the initial condition on the flow
result. To determine such an initial condition, a flow simulation was run
using a flat water table 1 meter below the land surface, with hydrostatic
conditions above and below, as the initial condition. This simulation had
a spatial discretization of 5 centimeters in the vertical direction and 100
centimeters in the horizontal direction, and a temporal discretization of 1
minute. The simulation was run for 2999 time steps, a total of approxi-
mately 2.1 days, with no recharge. The resulting moisture profile (shown

in Figure 4.11) and flow regime were used as initial conditions to the flow
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Figure 4.11: Initial saturation profile of the transient flow scenario. Note
that the vertical axis has been exaggerated by a factor of 3.

model for the transient flow simulation. The initial specific discharge field
was unremarkable and is not shown.

The rainfall intensity at each time step was based on rainfall records
for Urbana, Illinois, which were provided by Jaswinder Singh, a graduate
student in the Department of Natural Resources and Environmental Science
at the University of Illinois at Urbana-Champaign. From these records, a
period of approximately 40 days during the spring of 1993 was chosen. This
period was chosen because it contained several rain events of varying inten-
sity. Because the rainfall data were recorded every hour, and the time scale
of the model was 1 minute, it was assumed that the rainfall intensity distri-
bution was uniform during each hour. Using this assumption, the average
rainfall rate for each time step of the simulation could be calculated by di-
viding the appropriate hourly rainfall figure by 60. The rainfall hydrograph
for the simulation is shown in Figure 4.12.

The flow model was applied to the hypothetical cross-section using a spa-
tial discretization of 5 centimeters in the vertical direction and 100 centime-
ters in the horizontal direction, and a temporal discretization of 1 minute.
The simulation was run for 57,000 time steps, a total of approximately 40
days. Figure 4.13 shows the temporal distribution of water flow out of the
soil profile through the drain and ditch wall. This figure shows that a rain
event produces a fast response of flow into the ditch (approximately 5 min-
utes) and drain (approximately 15 minutes). This lag can be attributed to
the length of the shortest paths that water can take to these two destina-
tions. Additionally, the ditch has high background seepage, due to the high
water table caused by the initial conditions. This seepage tends to dampen
the flow response.

The hydrologic results from this flow simulation were then used in two

76



0.18

0.16 -
0.14 -
0.12

0.08
0.06

i S P Y

0 5 10 15 20 25 30 35 40
Time (days)

Rainfall Intensity (cm/min)
o
[y

o
R
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Figure 4.13: Volumetric flow rate of water out of the soil profile through the
drain and ditch wall. The rainfall intensity is plotted on the upper horizontal
axis in black.
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separate solute transport simulations. Both of these simulations used the
same spatial and temporal discretization as the flow model described above,
and used longitudinal, transverse horizontal, and transverse vertical disper-
sivities of 10.0 cm, 1.0 cm, and 1.0 cm, respectively.

In the first simulation, a non-reactive tracer was applied at a concen-
tration of 1 mg/cm?® in the infiltration water across the entire land surface
during the first 30 minutes of the simulation. The mass breakthrough of this
tracer to the drain and ditch is shown in Figure 4.14. Though not all of the
tracer left the soil profile during the 40 day period, a few generalizations can
still be made about the solute travel time distribution to both the ditch and
drain. First of all, it took approximately 4 days for the tracer to reach the
drain, whereas the flux of tracer through the ditch wall began almost imme-
diately. The response time of the drain to the tracer input was much longer
than that of the drain to a rain event. This is because the tracer had to
travel down from the soil surface before it could enter the drain (a distance
of approximately 1 meter). The water, on the other hand, was able to begin
to enter the drain as soon as the water table rose above the elevation of the
drain. Additionally, the peaks of the mass flux from both the drain and the
ditch are highly correlated with rain events. In the case of the drain, these
peaks seem to be increasing, indicating that the majority of the tracer that
would exit the soil profile through the drain had not yet done so. On the
other hand, the mass flux peaks for the ditch wall appear to be decreasing,
indicating that the majority of tracer that would exit through the ditch had
already done so. Finally, the majority of the solute that left the soil profile
during the first 10 days of the simulation left via the ditch, whereas for the
remainder of the simulation, the drain carried the majority of the solute lost
from the soil profile. It is suspected that the reason for this occurrence is
that the flow paths from the capture zone of the ditch to the ditch wall are
short, compared to those from the capture zone of the drain to the drain
itself.

In the second of these simulations, the OSERTM was applied to a re-
active transport scenario, as described in Section 4.2. In this simulation,
ammonium was applied during the first 30 minutes, and oxygen consump-
tion scenario B was used. The simulation was run for 57,000 time steps,
approximately 40 days.

The breakthrough curve of nitrate to the tile drain is shown in Fig-
ure 4.15. The breakthrough curve for oxygen was typical, given the initial
conditions of 8.52 mg/L in the unsaturated zone and 0 mg/L in the saturated

zone. The curve showed peaks corresponding with each rain event, with no
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Figure 4.14: Mass breakthrough of a non-reactive tracer from the drain and
ditch resulting from the transient flow scenario. The mass flux of tracer
through the drain is shown in blue, while the mass flux of tracer through
the ditch wall is shown in red. The rainfall intensity is plotted on the upper
horizontal axis in black.

initial lag. The curve for ammonium is not plotted, because no ammonium
reached the drain during the simulation. The breakthrough curve for the
ditch is not shown, because no nitrogen species exited the soil profile through
the ditch wall during the simulation. The concentration profiles at 10, 20,
30, and 40 days that resulted from this simulation are shown in Figures 4.16,
4.17, and 4.18 for ammonium, nitrate, and oxygen, respectively.

Similar to the steady state simulation, this simulation indicates that
ammonium sorbs strongly to the soil and is converted to nitrate before it
can exit the soil profile, and that there are regions with lower dissolved
oxygen concentrations, in which denitrification may occur. Thus, it can be
assumed that a higher rate of aerobic degradation of SOM would result in
less nitrate reaching the drain. This simulation also shows that the shortest
flow path nitrate can take to exit the soil profile through the ditch wall is
much longer than the shortest flow path to exit through the tile drain. It
takes approximately 7 days for nitrate to begin appearing in the drainage
water, and approximately 20 days before large quantities of nitrate exit the
drain during rain events. On the other hand it will take much longer than
40 days for nitrate to reach the ditch wall if it does in fact, reach the ditch
wall at all. This result indicates that the decision not to apply fertilizer

79



0.012 L | TT T T r V 0

- ‘ ‘T 1002
< 001 =
% + 0.04 E
E 0008 - 1006 §
5 2
3 +o008 =
20006 - S
% + 0.1 E
5 0004 1012 =
4 1014 @
s 0002 e

\r\ 1016

I
0 0.18
0 5 10 15 20 25 30 35 40

Time (days)

Figure 4.15: Mass breakthrough of nitrate from the drain resulting from
the transient flow scenario. The mass flux of nitrate is plotted on the lower
horizontal axis, while the rainfall intensity is plotted on the upper horizontal
axis.
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Figure 4.16: Concentration profiles of ammonium (mg/cm3) for the transient
flow scenario at (a) 10 days, (b) 20 days, (c) 30 days, and (d) 40 days. Note
that the vertical axis has been exaggerated by a factor of 3.
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Figure 4.17: Concentration profiles of nitrate (mg/cm?3) for the transient
flow scenario at (a) 10 days, (b) 20 days, (c) 30 days, and (d) 40 days. Note
that the vertical axis has been exaggerated by a factor of 3.
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Figure 4.18: Concentration profiles of oxygen (mg/cm?) for the transient
flow scenario at (a) 10 days, (b) 20 days, (c) 30 days, and (d) 40 days. Note
that the vertical axis has been exaggerated by a factor of 3.
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within 5 meters of the ditch was a good management strategy to reduce
the amount of nitrogen exiting the soil profile. If the buffer zone had not
existed, the results of the tracer simulation suggest that nitrate would have
exited through the ditch wall in large quantities early on in the simulation,
while the amount that exited the drain would have remained unchanged.
By increasing the residence time of the nitrate in the soil, there is a greater
chance for denitrification to occur, thus reducing the total amount of nitrate
that will exit the soil profile.

One further observation from this simulation is that nitrogen export
through the tile line is highly correlated with rain events. This pattern has
also been observed in the field (Gentry et al., 1998), indicating that the

OSERTM can reproduce conditions consistent with field observations.

4.5 Summary

In this chapter, the OSERTM is applied to several solute transport problems,
which include both non-reactive and reactive solutes, and both steady and
transient flow conditions. Though the results presented here are limited to
a two-dimensional soil profile with idealized geometry, analysis of results of
these applications indicate that the OSERTM provides valid solutions to
solute transport problems under conditions consistent with those found on
agricultural fields in Central Illinois. Further, these results begin to illustrate
the usefulness of the OSERTM for making nitrogen management decisions
and quantifying nitrogen losses from agricultural fields. In the next chapter,
some recommendations will be given to indicate the clearest path toward

preparing the OSERTM for field-scale applications.
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Chapter 5

Conclusions and
Recommendations

This research has shown that the OSERTM provides a viable solution to re-
active transport in all three spatial dimensions, with transient, non-uniform,
multi-dimensional flow in both the saturated and unsaturated zones. Ad-
mittedly, there are some drawbacks, in the form of memory and execution
time, to using the OSERTM rather than one of the other models described
in Chapter 1. With some refinement, however, the OSERTM may provide
a more powerful alternative to these models.

The following sections will outline some suggestions for future research
that may increase the accuracy, efficiency, and applicability of the OSERTM.

5.1 Spatial Discretization

As mentioned in Section 2.2, the OSERTM discretizes the physical domain
using a grid that has a uniform cell length and number of nodes in each of
the three spatial dimensions. A uniform grid was used in order to simplify
the calculations. This allowed the spatial discretization and the number of
nodes in each of the cardinal directions to be chosen based on the uniform
temporal discretization and the flow field at the beginning of the simulation.
This discretization remained constant in space and time. The most notable
deficiency of this approach is that it renders the model unable to replicate
the true geometry of the model domain. The most obvious example of
this problem can be seen in the ditch wall, in the simulations described in
Chapter 4. The wall was modeled as being vertical, and as intersecting
the land surface at a right angle. Obviously, this is not the true physical
geometry of the land surface. While there is not a great deal of relief in

Central Illinois, it is still important to be able to model variations in the
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topography of the physical domain as accurately as possible.

Another, less obvious, weakness of this approach is that it may require a
larger number of nodes than is necessary for a particular level of accuracy.
In non-uniform, multi-dimensional flow fields, such as those considered in
this research, the magnitude and direction of the specific discharge vectors
may vary greatly both within and between different regions of the model
domain. For example, Figure 4.4 shows that the direction of the specific
discharge vectors in the region around the tile drain varies from almost hor-
izontal, to nearly vertical, depending on the location of the vectors relative
to the drain, and that the magnitude of these vectors is much higher than it
is in the rest of the model domain, except near the bottom of the ditch wall.
On the other hand, the specific discharge in the far left region of the model
domain is moving nearly uniformly downward, with an almost uniform mag-
nitude. Because numerical errors occur more readily in regions where the
flow is changing magnitude and direction than in regions where it is nearly
uniform, it is important to use a fine grid in the more variable regions ( Chi-
lakapati and Yabusaki, 1999). In regions of nearly uniform flow, however,
it is unnecessary, and even wasteful to use such a fine grid, because little
accuracy is gained from the higher resolution. For this reason, it has been
suggested that a non-uniform grid that is finer in regions where the flow is
highly variable, and coarser elsewhere, should be used (Bear et al., 1998;
Wang et al., 1998). By employing a non-uniform grid for use on a specific
problem, it is possible to reduce the number of nodes, while maintaining
or increasing the model’s accuracy, thus resulting in a lower computational
demand for a fixed level of accuracy.

It is also important to consider that during transient flow conditions,
these “variable” regions actually experience highly non-uniform flow condi-
tions only temporarily. For this reason, in addition to the spatial discretiza-
tion of the OSERTM being non-uniform, it may also be useful for it to be
able to change with time. This idea will be revisited in the next section, but
before moving on, it is important to mention that the conjunctive flow model

must also be able to support any modification of the spatial discretization.

5.2 Temporal Discretization

The temporal domain is also currently discretized uniformly. However, as
with the spatial discretization, it is conceivable that this uniform discretiza-
tion may be excessively fine in certain regions of the temporal domain, and

too coarse in others. For example, during a rainstorm, it is important to
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capture the temporal rainfall distribution and subsurface flow variability.
For this purpose, a fine temporal discretization is necessary. However, dur-
ing dry spells, the subsurface flow changes very slowly with time, so a fine
temporal discretization is unnecessary. For this reason, an adaptive tempo-
ral discretization would be ideal. Such a method would refine the temporal
discretization just before a rainstorm and coarsen it after the subsurface
flow ceased to change rapidly with time, thus allowing the model to move
quickly from one rain event to the next. This would allow the majority of
the computational effort to be spent solving solute transport during high
flow events.

The temporal discretization, however, is dependent on the spatial dis-
cretization and the flow characteristics at specific points within the model
domain, as shown in Equations (2.5) and (2.6). It may be noted that Equa-
tion (2.5) contains the coefficient of dispersivity as a parameter, but it should
be recalled that this parameter is a function of the flow field according to
Equations (2.19), (2.20), (2.21), (2.23), and (2.24). Therefore, any refine-
ment of the temporal discretization may affect the stability of the model
for a particular spatial discretization. For this reason, a fully adaptive time
and space discretization may be the best option. Such a method would
calculate the best tradeoff between time and space discretization based on
a particular flow instance, in order to minimize the computational demand
for a particular level of accuracy. In such a method, both the spatial and
temporal discretizations would change with time during a simulation.

Once again, however, it is necessary to note that the conjunctive flow
model must also be able to support any modification of the temporal dis-

cretization.

5.3 Numerical Methods

Because, as mentioned above, it is important to evaluate the benefits of a
non-uniform spatial discretization, it should be noted that the third-order
accuracy of Leonard’s ULTIMATE TVD method has been questioned when
applied to a non-uniform grid (Liu et al., 1995). However, the authors
provide a modified form of the TVD method, which should be considered if
a non-uniform grid is implemented in the OSERTM (Liu et al., 1995).
Furthermore, because several researchers have noted the inaccuracy of
operator splitting (OS), and because the OSERTM currently uses a very
simple splitting algorithm with a low order of accuracy, the benefit of higher-

order splitting algorithms should be evaluated. The Strang splitting algo-
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rithm (Strang, 1963; Valocchi and Malmstead, 1992) is one of the most com-
monly used splitting algorithms, and it has been proven to have a higher
level of accuracy than normal time splitting. More recently, however, several
researchers have presented other splitting algorithms of higher order. The
most notable of these are described below.

Ding and Liu (1989) describe an OS algorithm that performs well for
two-dimensional advection-dispersion-reaction problems, where all three op-
erations were solved independently. The authors note that this algorithm
is similar to that of Holly and Preissmann (1977). In another paper, the
authors describe a modified version of this algorithm and apply it to three-
dimensional advection-dispersion problems (Ding and Liu, 1993).

Khan and Liu (1995) developed a second-order accurate OS algorithm
adapted from that of Holly and Preissmann. This algorithm’s performance is
described when applied to two- and three-dimensional advection-dispersion
problems (see Khan and Liu 1998a and Kahn and Liu 1998b, respectively).
Kahn and Liu also developed an algorithm based on the Strang method
(Kahn and Liu, 1995). This algorithm proved to be second order accu-
rate when applied to one-dimensional advection-dispersion-reaction prob-

lems, where all three operations were solved independently.

5.4 Physical Processes

The soil in the unsaturated zone often contains fractures, fissures, worm
holes, large-scale textural variations, and inter-aggregate pore spaces, gen-
erally referred to as “macropores” (Ray, 1994). These macropores have been
cited as the cause of sharp increases in tile drain flow and its solute con-
centration during heavy irrigation or rainfall events (Mohanty et al., 1998).
In fact, in a recent study of nitrogen loss from agricultural fields in TIlli-
nois, Gentry et al. (2000) noted that flow in Drummer soil is controlled by
preferential flow through macropores. For this reason, in the future, it is im-
portant for the OSERTM to address the role of macropores in the transport
of nitrogen. For an overview of the many methods available for modeling
flow and transport in macroporous media, see Mills et al. (1991), Gerke and
van Genuchten (1993), and Ray (1994). Once again it is important to note
that any consideration of macropores by the OSERTM would also have to
be supported by the conjunctive flow model.
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5.5 Biochemical Processes

The reaction system shown in Equations (2.41), (2.42), and (2.43), treat
the fate of ammonia fertilizer somewhat like that of a reactive tracer. In
reality, however, the biogeochemical cycling of nitrogen in soil is considerably
more complex. A variety of more complex biogeochemical models could
be implemented in the OSERTM, depending on whether management or
research questions were being addressed.

For management purposes, a nitrogen cycle comparable to the newest
version of DRAINMOD-N (Brevé et al., 1994) will be sufficient. This can
be implemented by adding the release of ammonia from the mineralization
of soil organic matter and the uptake of nitrate by crops to the OSERTM.
Such a model may prove very useful in further investigations of field studies.

For more in-depth research, immobilization of ammonium in soil organic
matter, transport of dissolved organic nitrogen, and the formation of the
nitrite intermediate in denitrification are the next processes to add to the
OSERTM. It may also be worth examining whether complex models of soil
biogeochemistry (such as CENTURY (Parton et al., 1992)), which divide soil
organic matter into multiple fractions, can be implemented in this frame-
work as well. While such models seem complex, their implementation in the
OSERTM may be able to be simplified because they emphasize transforma-
tions among immobile components. This would allow interesting studies to
be conducted in order to assess the degree to which the more complex model

accurately describes field data.

5.6 Interaction of the OSERTM with the

Conjunctive Flow Model

Currently, the OSERTM reads in hydrologic data on an “as needed basis”
from output files created by the conjunctive flow model. For example, at
each time step, the OSERTM reads the moisture content data for that time
step into memory and deletes from memory any unneeded moisture content
data from the previous time step. This method of providing hydrologic data
to the OSERTM requires the use of enormous data files, as well as a lot
of hard disk access, a time-consuming process. For example the specific
discharge data file for the transient simulation described in Section 4.4 was
over ten gigabytes large. Certainly some benefit could be gained by using
binary, rather than ASCII formatted data, but even so, the hydrologic data

for a single year would still be much too large to store on the hard disk of
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a personal computer. For this reason, the two models should be adapted
to work either in a “macroscale” batch environment or in a fully dynamic
environment. In a macroscale batch environment, the problem would be
divided into macroscale time intervals each consisting of a finite number of
time steps. The flow model would produce the hydrologic data for a time
interval and write it to the hard disk. Then, the OSERTM would solve
the solute transport just as before, using disk access to read in the data
on an as needed basis. At the end of the solute transport simulation, the
flow model would read in the hydrologic data for the last time step, and
then begin a new simulation for the next macroscale time interval. When
this flow simulation was complete, the OSERTM would read in the final
solute concentration distributions as initial conditions and begin the solute
transport simulation for the macroscale time interval. This process would
continue until all the macroscale time intervals, and thus all the time steps,
had been simulated. The advantage of this method is that the data files
could be kept to a manageable size.

The fully dynamic environment is really just a special case of the macroscale
batch environment, where each macroscale time interval consists of just one
time step. This method has the added benefit of the data files possibly being
small enough to be kept in memory, thus eliminating the need for slow hard
disk access. This would dramatically increase the speed of OSERTM /flow
model interaction. For this reason, this method is the most efficient, and
thus is the best option for implementation of the OSERTM.
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Appendix A

Input Files

Before detailing the format of the input files, it is important to note that
the OSRTM does not specify a system of units a priori. For this reason, any
units for length, mass, and time can be used; however, this functionality
comes at the price of requiring the user to be conscious of unit consistency.
For example, if decimeters, grams, and minutes are chosen for the units
of length, mass, and time, then concentration must be specified in g/dm?,

which is equivalent to g/liter.

A.1 PARAM

The PARAM input file is used by the OSERTM to specify model parameters
such as time and space discretization sizes, number of chemicals, etc. This
input file uses the Fortran 90 namelist construct to specify parameter as-
signments. The first line of the file must contain the text &PARAMETERS and
end with a forward slash (/) character. Also, a comma must end each as-
signment statement. An example of this input file is shown in Figure A.1.

In this figure, data types have been substituted for parameter values.

A.2 FILESIN

The FILESIN input file contains a list of the filenames of the input and output
files used in the simulation. The lines beginning with the capital letter C
are comment lines, and are not read. The other lines contain the partial
path and file names of the CHEM, ICOND, PATCH, STYPE, SPARAM, MOISTURE,
SPDIS, DRAIN, VEC, CDRAIN, MDITCH, and PROFILES files, respectively. These
file names must be less than 40 characters in length. Figure A.2 shows an

example of this input file.
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&PARAMETERS

ALPHA L = double float,
ALPHA_TH = double float,
ALPHA_TV = double float,
CHEM = integer,
CHOICE = integer,
Dstar = double float,
DELTA = double float,
DELTA j = double float,
DELTA k = double float,
DELTA_T = double float,
FILESIN = character string,
INCREMENTA = integer,
INCREMENTD = integer,

M = integer,

N = integer,
NUMDRAIN = integer,

(0] = integer,
STOPTIME = integer,
trans = (0 or 1),

/

Figure A.1: Example of PARAM input file.

A.3 CHEM

The CHEM input file is used by the OSERTM to define the chemicals that
will be tracked during the simulation. The first line is a comments line
and is not read. The second line contains the subsurface temperature in
degrees Celsius. This value should be input as a real number. The third
line is a comments line. The remaining lines contain a table of chemical
species and their properties. Each row contains the information specific to
one chemical. The first column of this table contains the chemical name.
The program does not use this information; it is meant to be merely an
aid to the user. The second column contains an integer identification code,
which must range from 1 to the number of chemicals in the simulation, in
order. The third, fourth, and fifth columns contain the soil-water partition
coefficient, the Henry’s Law coefficient in atmospheres per mole fraction,
and the coefficient of gaseous phase molecular diffusion. These parameters
should be input as real numbers. For example, the input file shown in

Figure A.4 describes three chemicals: ammonium, oxygen, and nitrate.
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C chemical parameter files
23/23chem.txt
23/23icond.txt
23/23patch.txt

C

C soil parameter files
flow/110501/113soiltype.txt
flow /110501 /sparam.txt
C

C flow parameter files
flow/110501/113M.dat
flow /110501 /113V..dat
flow/110501/113D.dat

C

C

23 /output/23VEC.dat
23/output/23Cdrain.dat
23/output/23Mout.dat
23/output/23cgmsl.dat
23/output/23cgms2.dat
23/output/23cgms3.dat
23/output/23cgms4.dat

Figure A.2: Example of FILESIN input file.

temperature in degrees C

15.0
name id Kd H(atm/X)
ammonium 1 1.0d-2 0.00
oXygen 2 0.00 43800.0
nitrate 3 0.00 0.00

Dg
0.00
34.70
0.00

Figure A.3: Example of CHEM input file.
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s NT mini maxi minj maxj mink maxk C(Mass/L3)
1 3 1 2 1 2 1 1 1.0
1 0 4 4 4 4 4 4 1.0
3 0 1 2 1 2 1 1 0.5
0 0 0 0 0 0 0 0 0.0
Figure A.4: Example of ICOND input file.
A.4 ICOND

The ICOND input file is used by the OSERTM to initialize the concentration
profiles of the chemicals being tracked by the model. This file has the form
of a table, where each column is 10 characters wide. The input type for
the first eight columns is integer, while the last column takes a real value.
The first row contains a comments field that is not read by the program.
The remaining rows contain the min and max node index in the x-, y-,
and z- directions, for chemicals of species s with a common concentration
C. The first column of each row contains the integer chemical index used
in the CHEM file to identify which chemical species is being described. The
second column contains the maximum number of time steps during which
this condition is true as an integer value. The third through eighth columns
demarcate the boundaries of the uniform concentration regions, and the last
column indicates the concentration of that region. The end of the file is
indicated by a row of zeros. For example, in Figure A.4, for the first three
time steps, the concentration of chemical 1 in nodes (1,1,1), (1,2,1), (2,1,1),
and (2,2,1) will be 1.0 mass/volume, while the concentration of chemical 3 in
those same nodes will be 0.5 mass/volume only at time zero. Also, chemical

1 will have an initial concentration of 1 mass/volume at cell node (4,4,4).

A.5 PATCH

The PATCH input file is used by the OSERTM to define the flux boundary
condition of the model. This file has the form of a table, where each column
is 10 characters wide. The input type for the first seven columuns is integer,
while the last column takes a real value. The first row contains a comments
field that is not read by the program. The remaining rows contain the
min and max coordinates in the x- and y-directions for chemicals of species
s with a common concentration C. The first column of each row contains
the integer chemical index used in the CHEM file to identify which chemical

species is being described. The time step numbers during which the flux
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s beginTime endTime mini maxi minj maxj C(Mass/L3)
1 3 5 1 10 1 1 2.40d-2

3 1 10 1 10 1 1 1.00d-3

0 0 0 0 0 0 0 0

Figure A.5: Example of PATCH input file.

condition begins and ends are indicated in the second and third columns.
The fourth through seventh columns contain node indices that demarcate
the boundaries of regions with uniform concentration. Note that because it
is assumed that mass only enters through the soil surface, only the x and
y limits are needed. Finally, the last column indicates the concentration
of that region, as calculated from Equation (2.13). The end of the file is
indicated by a row of zeros. For example, in Figure A.5, for the first ten
time steps there will be a flux of chemical 3 through the soil surface into
nodes (1,1,1) through (10,1,1). At time steps three through five, there will

be a flux of chemical 1 through the soil surface into those same nodes.

A.6 STYPE

The STYPE input file is used by the OSERTM to initialize the soil type
within the model domain. The first line of this file is a comments line and
is not read. The second line contains the number of unique soil types as
an integer value. The third line is a comments line. The remaining lines
are formatted as a table, with 10-character-wide columns. The first row of
this table contains a header and is not read by the program. The remaining
rows contain the min and max node indices in the x-, y-, and z- directions,
which demarcate the boundaries for regions of homogenous soil types. The
first column of each of these rows contains the integer index used to identify
the soil type. The remaining columns contain the minimum and maximum
node index in each direction of each homogenous region. The end of the
file is indicated by a row of zeros. Because the OSERTM initializes the
soil profile to contain soil type 1, the boundaries of soil type 1 need not be
specified. For example, in Figure A.6, there are 2 soil types. Nodes (20,1,1),
(20,2,1), (21,1,1), and (21,2,1) have soil type 2, while the remaining nodes

in the model domain have soil type 1.
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numtypes

2
TYPE MINX MAXX MINY MAXY MINZ MAXZ
2 20 21 1 2 1 1
0 0 0 0 0 0 0

Figure A.6: Example of STYPE input file.

TYPE poros bulk density
1 0.33 0.0
2 0.5 0.0

Figure A.7: Example of SPARAM input file.

A.7 SPARAM

The SPARAM input file is used by the OSERTM to define the properties for
the soil types declared in the STYPE input file. This file is formatted as a
table with three columns that are 10 characters wide. The first row of this
table is a header row that is not read by the program, while the remaining
rows contain the soil parameters for each soil type. The first column contains
the integer index of the soil type, while the remaining two columns contain
the soil porosity and bulk density as real numbers. The soil types must be
listed in order from 1 to the number of soil types. Figure A.7 shows an
example of this input file where there are two soil types. Notice that the
bulk density may contain a zero value. The bulk density is only needed by
the OSERTM to calculate sorbtion from the linear isotherm model described
in Equation (2.3). If there are no chemicals that sorb to the soil, then the

bulk density need not be specified. In this case a value of zero can be used.

A.8 SPDIS

The SPDIS input file is used by the OSERTM to define the x-, y-, and
z-directional components of the specific discharge through each of the cell
faces. The data should be written such that each time level is written as
a column vector, and in each vector, the x-directional data comes before
the y-directional data, which comes before the z-directional data. This data
should also be able to be associated with the correct node when the cells
are accessed, first in increasing j, then i, and finally k index. A header that
indicates the time level precedes the column of data for each time level.
The end of the data set is indicated by the text ENDDS. If the simulation
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TS 0 100.00
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000

TS 0 200.00
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000

ENDDS

Figure A.8: Example of SPDIS input file.

has transient flow conditions, then data for each of the model time steps
is necessary; however, if the simulation has steady state flow, then data is
only needed at one time level. An example of the SPDIS data file is shown

in Figure A.8.

A9 MOISTURE

The MOISTURE input file is used by the OSERTM to define the moisture
content at each node. The data should be written in such a way that each
time level is written as a column vector, which, when reading the data
from top to bottom can be associated with the correct node, if the cells are
accessed first in increasing j, then i, and finally k index. The entire data set
is preceded by a six-line header, which is necessary for the file to be read by
GMS. A header that indicates the time level precedes the column of data for
each time level. The end of the data set is indicated by the text ENDDS. If
the simulation has transient flow conditions then data for each of the model
time steps is necessary; however, if the simulation has steady state flow,
then data is only needed at one time level. An example of the MOISTURE
data file is shown in Figure A.9. Note that the header of this file is required
so that this data may be imported into GMS for visualization. The value
that follows ND and NC on the fourth and fifth lines of this header is the
number of nodes in the block centered grid used for the simulation, and is

equal to m x n * o.
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DATASET

OBJTYPE “grid3d”

BEGSCL

ND 1860

NC 1860

NAME “moisture content”

TS 0 100.00
0.460723149633787
0.474634196060553
0.475034989297849
0.475048429308926
0.475048882685746

TS 0 200.00
0.460723149633787
0.474634196060553
0.475034989297849
0.475048429308926
0.475048882685746

ENDDS

Figure A.9: Example of MOISTURE input file.
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TS 0 100.00
1 1 1 31 21 0.2615380729
TS 0 200.00
1 1 1 31 21 0.2615380729

Figure A.10: Example of DRAIN input file.

A.10 DRAIN

The DRAIN input file is used by the OSERTM to determine the location of
any drain segments that pass through cells in the model domain. If the
simulation does not include any drains, then this file is not necessary. Data
for each time level is written as a 6-column table, where columns 1 through 5
contain integer values and column 6 contains a real value. The first column
contains the drain number, the second column contains the segment number,
the third, fourth, and fifth columns contain the j, i, and k index of the node
though which that drain segment passes, and the sixth column contains
the flow rate [L3/T] of that drain during that time step. If the simulation
has transient flow conditions then data for each of the model time steps is
necessary; however, if the simulation has steady state flow, then data is only
needed at one time level. An example of the DRAIN input file is shown in
Figure A.10.
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Appendix B

Output Files

B.1 VEC

The VEC output file is designed so that the specific discharge field, defined by
the SPDIS input file, can be imported into GMS for visualization purposes.
As mentioned in Chapter 3, GMS requires that the directional components
of the specific discharge vectors be defined at the nodes, not at the cell
boundaries. Linear averaging is used to convert the data in the SPDIS file
into this format. At each time step where data is collected, the elapsed
time of the simulation will be written out in the format TS 0 <elapsed
time>, followed by the specific discharge data [L/T]. The header of this file
is required so that this data may be imported into GMS for visualization.
The value that follows ND and NC on the fourth and fifth lines of this header
is the number of nodes in the block-centered grid used for the simulation,

and is equal to m * n * o.

B.2 CDRAIN

The CDRAIN output file is used to output the mass flux from the tile drain.
Each row contains data taken at the elapsed time indicated in the first
column. The remaining columns contain the mass flux [M/L2] of chemical
1 through s in order, where s is the number of chemicals tracked during
the simulation. Figure B.2 shows an example of this output file for three

chemicals.

B.3 MDITCH

The MDITCH output file is used to output the mass flux through the model

boundaries. Each row contains data taken at the elapsed time indicated in
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DATASET

OBJTYPE “grid3d”

BEGVEC
ND 2760
NC 2760

NAME *“specific discharge”

TS 0 100.00
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

TS 0 200.00
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

ENDDS

0.000211594
0.000014370
0.000000507
0.000000017
0.000000001
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000211594
0.000014370
0.000000507
0.000000017
0.000000001
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

-0.000090808
-0.000099330
-0.000099976
-0.000099999
-0.000100000
-0.000100000
-0.000100000
-0.000100000
-0.000100000
-0.000100000

-0.000090808
-0.000099330
-0.000099976
-0.000099999
-0.000100000
-0.000100000
-0.000100000
-0.000100000
-0.000100000
-0.000100000

Figure B.1: Example of VEC output file.
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0.00
13140.00
26280.00
39420.00
52560.00
65700.00
78840.00
91980.00

105120.00
118260.00

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000
0.000241431
0.000253830
0.000278229
0.000306930
0.000333500
0.000358209
0.000381270
0.000402483
0.000425774

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000011
0.000000121
0.000000643

Figure B.2: Example of CDRAIN output file.

0.00
13140.00
26280.00
39420.00
52560.00
65700.00
78840.00
91980.00

105120.00
118260.00

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000
0.000428971
0.000403302
0.000365887
0.000347261
0.000340931
0.000340408
0.000343895
0.000350281
0.000358457

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

Figure B.3: Example of MDITCH output file.

the first column. The remaining columns contain the mass flux [M/L?] of
chemical 1 through s in order, where s is the number of chemicals tracked
during the simulation. Figure B.3 shows an example of this output file for

three chemicals.

B.4 PROFILE

The PROFILE output file is designed so that the concentration profile of
a specified chemical species at specified times during the simulation can
be imported into GMS for visualization purposes. At each time step where
data is collected, the elapsed time of the simulation will be written out in the
format TS 0 <elapsed time>, followed by the concentration data [M/L?].
The header of this file is necessary in order for these data to be imported
into GMS for visualization. The value that follows ND and NC on the fourth
and fifth lines of this header is the number of nodes in the block-centered

grid used for the simulation, and is equal to m * n * 0. Figure B.4 shows an
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DATASET

OBJTYPE “grid3d”

BEGSCL

ND 1860

NC 1860

NAME “CHEM 1”

TS 0 100.00
0.000000000000000E+-000
0.000000000000000E+-000
0.000000000000000E+-000
0.000000000000000E+-000
0.000000000000000E+000
0.000000000000000E+-000
0.000000000000000E+000
0.000000000000000E+-000
0.000000000000000E+-000

TS 0 200.00
0.000000000000000E4-000
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000
0.000000000000000E4-000
0.000000000000000E+-000

ENDDS

Figure B.4: Example of PROFILE output file.

example of this output file. Note that each PROFILE file only contains data
for one chemical species. If the simulation contains many chemical species,

a unique PROFILE file will be created for each species.
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